Evaluation of The Role of Some Medicinal Plants Extract with Honey and Vitamin B (Energy Fort Supplement) In Improving Some Enzymatic Indicators of Muscle Damage (AST-CK) In Purebred Arabian Horses Before and After the Race
الملخص
This research was conducted to study the physiological responses in purebred Arabian horses by knowing the biochemical changes in the level of Aspartate aminotransferase and Creatine kinase before and after the 1600-meter race and knowing the effect of medicinal extracts of Ginseng, Phyllanthus, Saussurea Costus, Alpinia, Celery And Mustard Seeds, in addition to the vitamin B group and honey included in the Energy Fort preparation, in improving Physiological responses and alleviation of some of the effects of post-race muscle fatigue. The horses were distributed into five groups, each group included six horses with similar weights according to the following: The First Group (G1): the normal control group. The horses were left without any race or exercise, to know the normal values of the studied variables (AST, CK).
-The Second Group (G2): The horses underwent a 1,600-meter gallop, then blood samples were collected from them immediately after the race, as this group was considered a positive control for The Third Group.
-The Third Group (G3): The horses in this group were given an Energy Fort supplement at a dose of 2 ml / 100 kg of live weight immediately before the 1600-meter race, and then blood samples were collected from them immediately after the race. The Fourth Group (G4): The horses underwent a 1,600-meter gallop, then blood samples were collected from them immediately after the race, as this group was considered a positive control for The Fifth Group. The Fifth Group (G5): The horses in this group underwent a 1,600-meter gallop, then were given Energy Fort supplement at a dose of 2 ml/100 kg live weight immediately after the race, and half an hour after giving the supplement, blood samples were collected from this group.All blood samples were obtained from the jugular vein. The results showed that real changes occurred in the physiological responses, represented by a significant increase in the average concentrations of Aspartate aminotransferase and Creatine kinase after the race in the positive control groups (G4-G2) when compared with the group of the normal control (G1), and a significant decrease in the average concentrations of Aspartate aminotransferase and Creatine kinase after the race in the groups Race (G5-G3) given Energy Fort supplement before and after race when compared with a positive control group (G2-G4)
References
Alaerjani, W. M. A., Abu-Melha, S., Alshareef, R. M. H., Al-Farhan, B. S., Ghramh, H. A., Al-Shehri, B. M. A., Bajaber, M. A., Khan, K. A., Alrooqi, M. M., Modawe, G. A., & Mohammed, M. E. A. (2022). Biochemical Reactions and Their Biological Contributions in Honey. Molecules (Basel, Switzerland), 27(15), 4719. https://doi.org/10.3390/molecules27154719
Anderson, M. G. (1975). The influence of exercise on serum enzyme levels in the horse. Equine Veterinary Journal, 7(3), 160-165.
Arabian Racing Organization UK. Racing data, racing data ARO racing. (2019). https://www.aroracing.co.uk/. [Accessed 28 January 2023].
Arfuso, F., Rizzo, M., Giannetto, C., Giudice, E., Cirincione, R., Cassata, G., Cicero, L., et al. (2022). Oxidant and Antioxidant Parameters’ Assessment Together with Homocysteine and Muscle Enzymes in Racehorses: Evaluation of Positive Effects of Exercise. Antioxidants, 11(6), 1176. MDPI AG. Retrieved from http://dx.doi.org/10.3390/antiox11061176
Assenza, A., Marafioti, S., Congiu, F., Giannetto, C., Fazio, F., Bruschetta, D., & Piccione, G. (2016). Serum muscle-derived enzymes response during show jumping competition in horse. Veterinary world, 9(3), 251–255. https://doi.org/10.14202/vetworld.2016.251-255
Billings, A., Quinn, J. K., & Spoor, M. S. (2021). Laboratory Markers of Muscle Injury. Equine Hematology, Cytology, and Clinical Chemistry, 119-141.
Bontemps, B., Vercruyssen, F., Gruet, M., & Louis, J. (2020). Downhill Running: What Are The Effects and How Can We Adapt? A Narrative Review. Sports medicine (Auckland, N.Z.), 50(12), 2083–2110. https://doi.org/10.1007/s40279-020-01355-z
Bos, A., Compagnie, E., & Lindner, A. (2018). Effect of racing on blood variables in Standardbred horses. Veterinary Clinical Pathology, 47(4), 625-628.
Boyd, J. W. (1985) The mechanisms relating to increases in plasma enzymes and isoenzymes in diseases of animals. Vet. clin. Path. 12,9-24.
Brancaccio, P., Lippi, G., & Maffulli, N. (2010). Biochemical markers of muscular damage. Clinical chemistry and laboratory medicine, 48(6), 757–767. https://doi.org/10.1515/CCLM.2010.179
Buckley, P., Buckley, D. J., Freire, R., & Hughes, K. J. (2022). Pre-race and race management impacts serum muscle enzyme activity in Australian horses. Equine veterinary journal, 54(5), 895–904. https://doi.org/10.1111/evj.13519
Burk, A. O., & Williams, C. A. (2008). Feeding management practices and supplement use in top-level event horses. Comparative Exercise Physiology, 5(02), 85. doi:10.1017/s1478061508062786
Buzala, M., Krumrych, W., & Janicki, B. (2015). Usefulness of Creatine Kinase Activity Determination for Assessing the Effects of Physical Effort in Horses. Pakistan Veterinary Journal, 35(3).
Cecchini, S., Paciolla, M., Caputo, A. R., & Bavoso, A. (2014). Antioxidant Potential of the Polyherbal Formulation "ImmuPlus": A Nutritional Supplement for Horses. Veterinary medicine international, 2014, 434239. https://doi.org/10.1155/2014/434239
Cosgrove, E. J., Sadeghi, R., Schlamp, F., Holl, H. M., Moradi-Shahrbabak, M., Miraei-Ashtiani, S. R., … Brooks, S. A. (2020). Genome Diversity and the Origin of the Arabian Horse. Scientific Reports, 10(1). doi:10.1038/s41598-020-66232-1
Ducharme, N. G., Fortier, L. A., Kraus, M. S., Hobo, S., Mohammed, H. O., McHugh, M. P., Hackett, R. P., Soderholm, L. V., & Mitchell, L. M. (2009). Effect of a tart cherry juice blend on exercise-induced muscle damage in horses. American journal of veterinary research, 70(6), 758–763. https://doi.org/10.2460/ajvr.70.6.758
Dżugan, M., Tomczyk, M., Sowa, P., & Grabek-Lejko, D. (2018). Antioxidant Activity as Biomarker of Honey Variety. Molecules (Basel, Switzerland), 23(8), 2069. https://doi.org/10.3390/molecules23082069
Elghandour, M. M., Reddy, P. R. K., Salem, A. Z., Reddy, P. P. R., Hyder, I., Barbabosa-Pliego, A., & Yasaswini, D. (2018). Plant bioactives and extracts as feed additives in horse nutrition. Journal of Equine Veterinary Science, 69, 66-77.
Ferguson, B. S., Rogatzki, M. J., Goodwin, M. L., Kane, D. A., Rightmire, Z., & Gladden, L. B. (2018). Lactate metabolism: historical context, prior misinterpretations, and current understanding. European journal of applied physiology, 118(4), 691–728. https://doi.org/10.1007/s00421-017-3795-6
Ferlazzo, A., Cravana, C., Fazio, E., & Medica, P. (2020). The different hormonal system during exercise stress coping in horses. Veterinary world, 13(5), 847–859. https://doi.org/10.14202/vetworld.2020.847-859
Fontanel, M., Todd, E., Drabbe, A., Ropka-Molik, K., Stefaniuk-Szmukier, M., Myćka, G., & Velie, B. D. (2020). Variation in the SLC16A1 and the ACOX1 genes is associated with gallop racing performance in Arabian horses. Journal of Equine Veterinary Science, 103202. doi:10.1016/j.jevs.2020.103202
Fowler, W. M., Jr, Chowdhury, S. R., Pearson, C. M., Gardner, G., & Bratton, R. (1962). Changes in serum enzyme levels after exercise in trained and untrained subjects. Journal of applied physiology, 17, 943–946. https://doi.org/10.1152/jappl.1962.17.6.943
Franciscato, C., Lopes, S. T. D. A., Veiga, Â. P. M., Martins, D. B., Emanuelli, M. P., & Oliveira, L. S. S. (2006). AST, CK and GGT enzymes serum activities in Crioulo horses. Pesquisa Agropecuária Brasileira, 41, 1561-1565.
Frauenfelder, H. C., Rossdale, P. D., Ricketts, S. W., & Allen, W. R. (1986). Changes in serum muscle enzyme levels associated with training schedules and stage of the oestrous cycle in Thoroughbred racehorses. Equine veterinary journal, 18(5), 371–374. https://doi.org/10.1111/j.2042-3306.1986.tb03657.x
Freestone, J. F., Kamerling, S. G., Church, G., Bagwell, C., & Hamra, J. (2017). Exercise induced changes in creatine kinase and aspartate aminotransferase activities in the horse: effects of conditioning, exercise tests and acepromazine. Journal of Equine Veterinary Science, 9(5), 275-280.
Gardner, G. W., Bratton, R., Chowdhury, S. R., Fowler, W. M., Jr, & Pearson, C. M. (1964). Effect Of Exercise On Serum Enzyme Levels In Trained Subjects. The Journal of sports medicine and physical fitness, 4, 103–110.
Gardner D. S. (2016). Historical progression of racing performance in the Thoroughbred horse and man. Equine veterinary journal, 38(6), 581–583. https://doi.org/10.2746/042516406x156514
Gella FJ, Olivella T, Cruz Pastor M, Arenas J, Moreno R, Durban R and Gómez JA. (1985). A simple procedure for routine determination of aspartate aminotransferase and alanine aminotransferase with pyridoxal phosphate. Clin Chim Acta 1985; 153: 241-247
Geor, R. J. (2006). The role of nutritional supplements and feeding strategies in equine athletic performance. Equine and Comparative Exercise Physiology, 3(03), 109–119. doi:10.1017/ecp200690
Gim, J.-A., Ayarpadikannan, S., Eo, J., Kwon, Y.-J., Choi, Y., Lee, H.-K., … Kim, H.-S. (2014). Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses. Gene, 547(1), 152–158. doi:10.1016/j.gene.2014.06.051
Gladden L. B. (2004). Lactate metabolism: a new paradigm for the third millennium. The Journal of physiology, 558(Pt 1), 5–30. https://doi.org/10.1113/jphysiol.2003.058701
Gladden, L. B. (2008). Cause and effect. Journal of Applied Physiology (Bethesda, Md.: 1985), 105(1), 364-364. DOI: 10.1152/japplphysiol.zdg-8016-pcpcomm.2008. PMID: 18680793
Grigore, A., Vulturescu, V., Neagu, G., Ungureanu, P., Panteli, M., & Rasit, I. (2022). Antioxidant-Anti-Inflammatory Evaluation of a Poly herbal Formula. Pharmaceuticals (Basel, Switzerland), 15(2), 114. https://doi.org/10.3390/ph15020114
Guyton, A. C., & Hall, J. E. (2021). Textbook of medical physiology 14th edition. Rio de. ISBN: 9780323597128. Imprint: Elsevier
Harris, P. A., Snow, D. H., Greet, T. R. C., & Rossdale, P. D. (1990). Some factors influencing plasma AST/CK activities in thoroughbred racehorses. Equine Veterinary Journal, 22(S9), 66-71.
Harris, P. A., Marlin, D. J., & Gray, J. (1998). Plasma aspartate aminotransferase and creatine kinaseactivities in thoroughbred racehorses in relation to age, sex, exercise and training. The Veterinary Journal, 155(3), 295–304. doi:10.1016/s1090-0233(05)80026-7
Harty, P. S., Zabriskie, H. A., Erickson, J. L., Molling, P. E., Kerksick, C. M., & Jagim, A. R. (2018). Multi-ingredient pre-workout supplements, safety implications, and performance outcomes: a brief review. Journal of the International Society of Sports Nutrition, 15(1), 41.
Hill, A. V. (1914). The oxidative removal of lactic acid. J. Physiol, 48, 10-11.
Hills, S. P., Mitchell, P., Wells, C., & Russell, M. (2019). Honey Supplementation and Exercise: A Systematic Review. Nutrients, 11(7), 1586. https://doi.org/10.3390/nu11071586
Hinchcliff, K. W., Kaneps, A. J., & Geor, R. J. (Eds.). (2008). Equine exercise physiology: the science of exercise in the athletic horse. Elsevier Health Sciences.
Hinchcliff, K. W., Kaneps, A. J., & Geor, R. J. (2013). Equine Sports Medicine and Surgery E-Book. Elsevier Health Sciences.
Hodgson, D. R., McGowan, C. M., & McKeever, K. (2014). The athletic horse: principles and practice of equine sports medicine. Elsevier Health Sciences.
Hyldahl, R. D., Chen, T. C., & Nosaka, K. (2017). Mechanisms and Mediators of the Skeletal Muscle Repeated Bout Effect. Exercise and sport sciences reviews, 45(1), 24–33. https://doi.org/10.1249/JES.0000000000000095
IFCC methods for the measurement of catalytic concentration of enzymes. Part 7: IFCC method for Creatine kinase. JIFCC 1989; 1: 130-13
Jagim, A. R., Camic, C. L., & Harty, P. S. (2019). Common habits, adverse events, and opinions regarding pre-workout supplement use among regular consumers. Nutrients, 11(4), 855.
Johnson, R. A., Johnson, P. J., Megarani, D. V., Patel, S. D., Yaglom, H. D., Osterlind, S., … Crowder, S. M. (2017). Horses Working in Therapeutic Riding Programs: Cortisol, Adrenocorticotropic Hormone, Glucose, and Behavior Stress Indicators. Journal of Equine Veterinary Science, 57, 77–85. doi:10.1016/j.jevs.2017.05.006.
Kedzierski, W., & Bergero, D. (2006). Comparison of plasma biochemical parameters in Thoroughbred and Purebred Arabian horses during the same-intensity exercise. Polish journal of veterinary sciences, 9(4), 233–238.
Kerksick, C. M., Wilborn, C. D., Roberts, M. D., Smith-Ryan, A., Kleiner, S. M., Jäger, R., Collins, R., Cooke, M., Davis, J. N., Galvan, E., Greenwood, M., Lowery, L. M., Wildman, R., Antonio, J., & Kreider, R. B. (2018). ISSN exercise & sports nutrition review update: research & recommendations. Journal of the International Society of Sports Nutrition, 15(1), 38. https://doi.org/10.1186/s12970-018-0242-y
Łagowska, K., Podgórski, T., Celińska, E., & Kryściak, J. (2017). A comparison of the effectiveness of commercial and natural carbohydrate–electrolyte drinks. Science & Sports, 32(3), 160-164.
Lin, C. H., Lin, Y. A., Chen, S. L., Hsu, M. C., & Hsu, C. C. (2022). Ginseng Attenuates Exercise-Induced Muscle Damage via the Modulation of Lipid Peroxidation and Inflammatory Adaptation in Males. Nutrients, 14(1), 78. https://doi.org/10.3390/nu14010078
Lu, G., Liu, Z., Wang, X., & Wang, C. (2021). Recent Advances in Panax ginseng C.A. Meyer as a Herb for Anti-Fatigue: An Effects and Mechanisms Review. Foods (Basel, Switzerland), 10(5), 1030. https://doi.org/10.3390/foods10051030
Ma, G. D., Chiu, C. H., Hsu, Y. J., Hou, C. W., Chen, Y. M., & Huang, C. C. (2017). Changbai Mountain Ginseng (Panax ginseng C.A. Mey) Extract Supplementation Improves Exercise Performance and Energy Utilization and Decreases Fatigue-Associated Parameters. Molecules (Basel, Switzerland), 22(2), 237. https://doi.org/10.3390/molecules22020237
Mack, S. J., Kirkby, K., Malalana, F., & McGowan, C. M. (2014). Elevations in serum muscle enzyme activities in racehorses due to unaccustomed exercise and training. The Veterinary record, 174(6), 145. https://doi.org/10.1136/vr.101669
Mactaggart, G., Waran, N., & Phillips, C. J. C. (2021). Identification of Thoroughbred Racehorse Welfare Issues by Industry Stakeholders. Animals : an open access journal from MDPI, 11(5), 1358. https://doi.org/10.3390/ani11051358
Mami, S., Khaje, G., Shahriari, A., & Gooraninejad, S. (2019). Evaluation of Biological Indicators of Fatigue and Muscle Damage in Arabian Horses After Race. Journal of equine veterinary science, 78, 74–78. https://doi.org/10.1016/j.jevs.2019.04.007
Mercier, Q., & Aftalion, A. (2020). Optimal speed in Thoroughbred horse racing. PloS one, 15(12), e0235024. https://doi.org/10.1371/journal.pone.0235024
Meyerhof, O. (1920). Die Energieumwandlungen im Muskel. Pflügers Archiv European Journal of Physiology, 182(1), 232-283.
Murray, J. M. D., Hanna, E., & Hastie, P. (2021). Equine dietary supplements: an insight into their use and perceptions in the Irish equine industry. Irish Veterinary Journal, 71(1). doi:10.1186/s13620-018-0115-3
Muñoz, A., Riber, C., Santisteban, R., Lucas, R. G., & Castejón, F. M. (2002). Effect of training duration and exercise on blood-borne substrates, plasma lactate and enzyme concentrations in Andalusian, Anglo-Arabian and Arabian breeds. Equine veterinary journal. Supplement, (34), 245–251. https://doi.org/10.1111/j.2042-3306.2002.tb05427.x
National Research Council. 2017. Equine Blood Biochemistry. 6th ed. USA: Washington: The National Academies Press.
Octura, J. E. R., Lee, K. J., Cho, H. W., Vega, R. S., Choi, J., Park, J. W., ... & Cho, B. W. (2018). Elevation of blood creatine kinase and selected blood parameters after Race in thoroughbred racehorses (Equus caballus L.). J Res Agric Anim Sci, 2, 7-13.
Önder, H., Şen, U., Piwczyński, D., Kolenda, M., Drewka, M., Abacı, S. H., & Takma, Ç. (2022). Comparison of Random Regression Models with Different Order Legendre Polynomials for Genetic Parameter Estimation on Race Completion Speed of Arabian Horses. Animals, 12(19), 2630. MDPI AG. Retrieved from http://dx.doi.org/10.3390/ani12192630
Pandey, M. M., Rastogi, S., & Rawat, A. K. (2007). Saussurea costus: botanical, chemical and pharmacological review of an ayurvedic medicinal plant. Journal of ethnopharmacology, 110(3), 379–390. https://doi.org/10.1016/j.jep.2006.12.033
Paulsen, G., Ramer Mikkelsen, U., Raastad, T., & Peake, J. M. (2012). Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise?. Exercise immunology review, 18.
Peake, J. M., Neubauer, O., Della Gatta, P. A., & Nosaka, K. (2017). Muscle damage and inflammation during recovery from exercise. Journal of applied physiology (Bethesda, Md. : 1985), 122(3), 559–570. https://doi.org/10.1152/japplphysiol.00971.2016
Piccione, G., Fazio, F., Giannetto, C., Assenza, A., & Caola, G. (2007). Oxidative stress in thoroughbreds during official 1800-metre races. Veterinarski Arhiv, 77(3), 219-227.
Piccione, G., Fazio, A., & Giudice, E. (2017). Oxidative stress in standardbred horses during official races of 1600 and 2000 meters. Medycyna Weterynaryjna, 63(12), 1554.
Pillai, M. K., Young, D. J., & Bin Hj Abdul Majid, H. M. (2018). Therapeutic Potential of Alpinia officinarum. Mini reviews in medicinal chemistry, 18(14), 1220–1232. https://doi.org/10.2174/1389557517666171002154123
Pösö, A. R., Soveri, T., & Oksanen, H. E. (1983). The effect of exercise on blood parameters in Standardbred and Finnish-bred horses. Acta vet. scand, 24, 170-184.
Prince, A., Geor, R., Harris, P., Hoekstra, K., Gardner, S., Hudson, C., & Pagan, J. (2002). Comparison of the metabolic responses of trained Arabians and Thoroughbreds during high- and low-intensity exercise. Equine veterinary journal. Supplement, (34), 95–99. https://doi.org/10.1111/j.2042-3306.2002.tb05398.x
Rivero, J. L., & Piercy, R. J. (2008). Muscle physiology: responses to exercise and training. Equine exercise physiology: the science of exercise in the athletic horse, 463.
Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American journal of physiology. Regulatory, integrative and comparative physiology, 287(3), R502–R516. https://doi.org/10.1152/ajpregu.00114.2004
Rossi, R., Lo Feudo, C. M., Zucca, E., Vizzarri, F., Corino, C., & Ferrucci, F. (2021). Innovative Blood Antioxidant Test in Standardbred Trotter Horses. Antioxidants (Basel, Switzerland), 10(12), 2013. https://doi.org/10.3390/antiox10122013
Sellami, M., Slimeni, O., Pokrywka, A., Kuvačić, G., D Hayes, L., Milic, M., & Padulo, J. (2018). Herbal medicine for sports: a review. Journal of the International Society of Sports Nutrition, 15, 14. https://doi.org/10.1186/s12970-018-0218-y
Silva, B., Biluca, F. C., Gonzaga, L. V., Fett, R., Dalmarco, E. M., Caon, T., & Costa, A. C. O. (2021). In vitro anti-inflammatory properties of honey flavonoids: A review. Food Research International, 141, 110086.
Smarsh, D. N., Liburt, N., Streltsova, J., McKeever, K., & Williams, C. A. (2010). Oxidative stress and antioxidant status in intensely exercising horses administered nutraceutical extracts. Equine Veterinary Journal, 42, 317-322.
Snow, D. H., & Harris, P. (1988). Enzymes as markers of physical fitness and training of racing horses. Adv Clin Enzymol, 6, 251-258.
Stožer, A., Vodopivc, P., & Križančić Bombek, L. (2020). Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiological research, 69(4), 565–598. https://doi.org/10.33549/physiolres.934371
Takahashi, Y., Mukai, K., Ohmura, H., & Takahashi, T. (2020). Do muscle activities of M. splenius and M. brachiocepalicus decrease due to exercise-induced fatigue in Thoroughbred horses? Journal of Equine Veterinary Science, 102901. doi:10.1016/j.jevs.2019.102901
Takahashi, Y., Takahashi, T., Mukai, K., & Ohmura, H. (2021). Effects of Fatigue on Stride Parameters in Thoroughbred Racehorses During Races. Journal of Equine Veterinary Science, 101, 103447. Sport Science Division, Equine Research Institute, Japan Racing Association, Tochigi 320-0856, Japan doi:10.1016/j.jevs.2021.10344
Tardy, A. L., Pouteau, E., Marquez, D., Yilmaz, C., & Scholey, A. (2020). Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients, 12(1), 228. https://doi.org/10.3390/nu12010228.
Terzo, S., Mulè, F., & Amato, A. (2020). Honey and obesity-related dysfunctions: A summary on health benefits. The Journal of Nutritional Biochemistry, 82, 108401.
Vejjajiva, A., & Teasdale, G. M. (1965). Serum Creatine Kinase and Physical Exercise. British medical journal, 1(5451), 1653–1654. https://doi.org/10.1136/bmj.1.5451.1653
Wang, T., Zeng, Y., Ma, C., Meng, J., Wang, J., Ren, W., Wang, C., Yuan, X., Yang, X., & Yao, X. (2023). Plasma Non-targeted Metabolomics Analysis of Yili Horses Raced on Tracks With Different Surface Hardness. Journal of equine veterinary science, 121, 104197. Advance online publication. https://doi.org/10.1016/j.jevs.2022.104197
Warren, H. (2017). Supplements for horses. Equine Health, 2017(35), 11-12.
Williams, C. A., & Lamprecht, E. D. (2008). Some commonly fed herbs and other functional foods in equine nutrition: a review. Veterinary journal (London, England : 1997), 178(1), 21–31. https://doi.org/10.1016/j.tvjl.2007.06.004
Witkowska-Piłaszewicz, O., Maśko, M., Domino, M., & Winnicka, A. (2020). Infrared Thermography Correlates with Lactate Concentration in Blood during Race Training in Horses. Animals, 10(11), 2072. MDPI AG. Retrieved from http://dx.doi.org/10.3390/ani10112072
Witkowska-Piłaszewicz, O., Grzędzicka, J., Seń, J., Czopowicz, M., Żmigrodzka, M., Winnicka, A., … Carter, C. (2021). Stress response after race and endurance training sessions and competitions in Arabian horses. Preventive Veterinary Medicine, 188, 105265. doi:10.1016/j.prevetmed.2021.1052.
Yan, X., Li, Q., Jing, L., Wu, S., Duan, W., Chen, Y., Chen, D., & Pan, X. (2022). Current advances on the phytochemical composition, pharmacologic effects, toxicology, and product development of Phyllanthi. Frontiers in pharmacology, 13, 1017268. https://doi.org/10.3389/fphar.2022.1017268
Zha, W., Sun, Y., Gong, W., Li, L., Kim, W., & Li, H. (2022). Ginseng and ginsenosides: Therapeutic potential for sarcopenia. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 156, 113876. https://doi.org/10.1016/j.biopha.2022.113876
Zheng, X., Zhao, Y., Naumovski, N., Zhao, W., Yang, G., Xue, X., Wu, L., Granato, D., Peng, W., & Wang, K. (2022). Systems Biology Approaches for Understanding Metabolic Differences Using 'Multi-Omics' Profiling of Metabolites in Mice Fed with Honey and Mixed Sugars. Nutrients, 14(16), 3445. https://doi.org/10.3390/nu14163445
Zuluaga Cabrera, A. M., Casas Soto, M. J., Martínez Aranzales, J. R., Castillo Vanegas, V. E., Correa Valencia, N. M. D. P., & Arias Gutierrez, M. P. (2022). Hematological, biochemical, and endocrine parameters in acute response to increasing-intensity exercise in Colombian Paso horses. Revista mexicana de ciencias pecuarias, 13(1), 211-224.