دراسة تأثير السيلينيوم في تقليل الأثر السمي للمنغنيز عند الهامستر السوري

  • عبدالملك كرزون سوري
الكلمات المفتاحية: التسمم بالمنغنيز، سيلينات الصوديوم، السلينيوم والتسمم، ناقلة أمين الأسبارتات، الهامستر السوري.

الملخص

الملخص باللغة العربية:

أُجريَّ هذا البحثِ لدراسةِ التغيرات الفيزيولوجية الناجمة عن التعرض المفرط للمنغنيز من خلالِ معرفة بعض المتغيرات لبعض وظائف الكبد (ناقلة أمين الأسبارتات، وناقلة أمين الآلانين) ومعرفة دور السلينيوم في التقليل من الأثر السمي للمنغنيز على الكبد وتحسين تلك المتغيرات الفيزيولوجية، وكل ذلك تجريبياً عند الهامستر السوري.

ضمت التجربة (30) هامستر، وُزعتْ الحيوانات في ثلاثة مجموعات بشكل عشوائي، وضمت كل مجموعة 10 حيوانات تجربة بأوزان متقاربة وفق التالي:

  • المجموعة الأولى (G1): مجموعة الشاهد الطبيعي جُرعت حيوانات هذه المجموعة بالمحلول الملحي الفيزيولوجي NaCl بتركيز 9 % وقد أعطيت العليقة الاعتيادية، وعُدت كمجموعة شاهد سلبي.
  • المجموعة الثانية(G2) : أًعطيت حيوانات هذه المجموعة كلوريد المنغنيز بتركيز 100 ملغم/ كغم من وزن الجسم عن طريق التجريع الفموي باستخدام محقن خاص لهذا الغرض يومياً ولمدة أربعة أسابيع، وعُدت كمجموعة شاهد ايجابي.
  • المجموعة الثالثة(G3) : أًعطيت حيوانات هذه المجموعة كلوريد المنغنيز بتركيز 100 ملغم/ كغم من وزن الجسم عن طريق التجريع الفموي باستخدام محقن خاص لهذا الغرض، كما أعطيت سيلينات الصوديوم مع العليقة بتركيز 1 ملغم/ كغم من العليقة يومياً ولمدة أربعة أسابيع.
  • تمَّ الحصول على جميع العينات الدموية في نهاية الأسبوع الرابع من التجربة وذلك من القلب مباشرةً.

أظهرت النتائج: حدوثَ تغيراتٍ فيزيولوجية لوظائف الكبد ناجمة عن التسمم بالمنغنيز تمثلت بحدوثِ ارتفاع معنوي (P≤0.05) في متوسط وتركيز ناقلة أمين الأسبارتات وناقلة أمين الآلانين في المجموعة الثانية المعاملة بكلوريد المنغنيز (G2) وذلك عندَ مقارنتها مع مجموعة الشاهد الطبيعي (G1)، وحدوثِ انخفاض معنوي (P≤0.05) في تركيز ناقلة أمين الأسبارتات وناقلة أمين الآلانين في المجموعة الثالثة (G3) المعاملة بكلوريد المنغنيز والمعالجة بسيلينات الصوديوم وذلك عندَ مقارنتها مع مجموعة الشاهد الايجابي (G2).

المراجع

Abdel-Fattah, H.M.; Hassanin, E.A.; Abdel-Kader, Z.M. & Hassan, L.E. (2018). Evaluation of using selenium to mitigate the toxic effect of cadmium and mercury contamination in male rats. Egyp. J. Natural Toxins. 5(1,2): 1-19 .
Akoume, M.Y.; Perwaiz, S.; Yousef, I.M.& Plaa, G.L. (2003). Synergistic role of 3– hydroxyl–3–methylgtaryl coenzyme A reductase and cholesterol–7–alpha–hydroxylase in the pathogenesis of manganese bilirubin–induced cholestasis in rats . Toxicol . Sci. 73(2): 378 – 385 .
Akoume, M. Y., Tuchweber, B., Plaa, G. L., & Yousef, I. M. (2004). The role of mdr2 in manganese–bilirubin induced cholestasis in mice. Toxicology letters, 148(1-2), 41-51.‏
Alba-González, A., Dragomir, E. I., Haghdousti, G., Yáñez, J., Dadswell, C., González-Méndez, R., ... & Folgueira, M. (2024). Manganese Overexposure Alters Neurogranin Expression and Causes Behavioral Deficits in Larval Zebrafish. International Journal of Molecular Sciences, 25(9), 4933.‏
Arteel, G.E.& Sies, H. (2001). The biochemistry of selenium and glutathione system. Envir. Toxicol. Pharmacol. 10: 153-158.
Ashong, G. W., Ababio, B. A., Kwaansa-Ansah, E. E., Gyabeng, E., & Nti, S. O. (2024). Human and ecotoxicological risk assessment of heavy metals in polymer post treatment sludge from Barekese Drinking Water Treatment Plant, Kumasi. Toxicology Reports, 12, 404-413.‏
Baj, J., Flieger, W., Barbachowska, A., Kowalska, B., Flieger, M., Forma, A., ... & Flieger, J. (2023). Consequences of disturbing manganese homeostasis. International Journal of Molecular Sciences, 24(19), 14959. ‏
Behne, D.; Weiss–Nowak, C.; Kalcklosch, M.; Westphal, C.; Gessner, H.& Kyriakopoulos, A. (1995). Studies on the distribution and characteristics of new mammalian selenium–containing proteins. Analyst. 120: 823 – 825.
Chandel, M., & Jain, G. C. (2016). Manganese chloride induced hepatic and renal toxicity in Wistar rats. Toxicology International, 23(3), 212-220.‏
Chandra, S., & Roychoudhury, A. (2020). Role of selenium and manganese in mitigating oxidative damages. Protective chemical agents in the amelioration of plant abiotic stress: Biochemical and Molecular Perspectives, 597-621.‏
Chen, T., Wang, X., Yan, X., Dai, Y., Liang, T., Zhou, L., ... & Ding, C. (2022). A novel selenium polysaccharide alleviates the manganese (Mn)-induced toxicity in Hep G2 cells and Caenorhabditis elegans. International Journal of Molecular Sciences, 23(8), 4097.‏
Chtourou, Y., Trabelsi, K., Fetoui, H., Mkannez, G., Kallel, H., & Zeghal, N. (2011). Manganese induces oxidative stress, redox state unbalance and disrupts membrane bound ATPases on murine neuroblastoma cells in vitro: protective role of silymarin. Neurochemical Research, 36, 1546-1557.‏
Dorman, D. C. (2023). The Role of Oxidative Stress in Manganese Neurotoxicity: A Literature Review Focused on Contributions Made by Professor Michael Aschner. Biomolecules, 13(8), 1176.‏
Eddie-Amadi, B. F., Ezejiofor, A. N., Orish, C. N., & Orisakwe, O. E. (2022). Zinc and selenium mitigated heavy metals mixture (Pb, Al, Hg and Mn) mediated hepatic-nephropathy via modulation of oxido-inflammatory status and NF kB signaling in female albino rats. Toxicology, 481, 153350.‏
Erkekoglu, P., Arnaud, J., Rachidi, W., Kocer-Gumusel, B., Favier, A., & Hincal, F. (2015). The effects of di (2-ethylhexyl) phthalate and/or selenium on trace element levels in different organs of rats. Journal of Trace Elements in Medicine and Biology, 29, 296-302.‏
Farina, M., Avila, D. S., Da Rocha, J. B. T., & Aschner, M. (2013). Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochemistry international, 62(5), 575-594.‏
Ge, X., Liu, Z., Hou, Q., Huang, L., Zhou, Y., Li, D., ... & Yang, X. (2020). Plasma metals and serum bilirubin levels in workers from manganese-exposed workers healthy cohort (MEWHC). Environmental pollution, 258, 113683.‏
Gella FJ, Olivella T, Cruz Pastor M, Arenas J, Moreno R, Durban R and Gómez JA. (1985). A simple procedure for routine determination of aspartate aminotransferase and alanine aminotransferase with pyridoxal phosphate. Clin Chim Acta 1985; 153: 241-247
Hossain, M., Karmakar, D., Begum, S. N., Ali, S. Y., & Patra, P. K. (2021). Recent trends in the analysis of trace elements in the field of environmental research: A review. Microchemical Journal, 165, 106086.‏
Houldsworth, A. (2024). Role of oxidative stress in neurodegenerative disorders: A review of reactive oxygen species and prevention by antioxidants. Brain Communications, fcad356.‏
Ismail, H. T. H. (2019). Hematobiochemical disturbances and oxidative stress after subacute manganese chloride exposure and potential protective effects of ebselen in rats. Biological trace element research, 187(2), 452-463.‏
Kanayama, Y., Tsuji, T., Enomoto, S., & Amano, R. (2005). Multitracer screening: brain delivery of trace elements by eight different administration methods. Biometals, 18, 553-565.‏
Leavens, T. L., Rao, D., Andersen, M. E., & Dorman, D. C. (2007). Evaluating transport of manganese from olfactory mucosa to striatum by pharmacokinetic modeling. Toxicological Sciences, 97(2), 265-278.‏
Lu, K. (2023). Cellular pathogenesis of hepatic encephalopathy: an update. Biomolecules, 13(2), 396.‏
Lucchini, R. G., Dorman, D. C., Elder, A., & Veronesi, B. (2012). Neurological impacts from inhalation of pollutants and the nose–brain connection. Neurotoxicology, 33(4), 838-841.‏
Mattison, D. R., Momoli, F., Alyanak, C., Aschner, M., Baker, M., Cashman, N., ... & Krewski, D. (2024). Diagnosis of manganism and manganese neurotoxicity: A workshop report. Medicine International, 4(2), 1-9.‏

Miao, J., Chard, L. S., Wang, Z., & Wang, Y. (2019). Syrian hamster as an animal model for the study on infectious diseases. Frontiers in immunology, 10, 457882. ‏
Nadaska G, Lesny J, Michalik I.(2021). Environmental aspect of manganese chemistry. 2021;1–16. http://heja.szif.hu/ENV/ENV_100702-A/env100702a.pdf
Nicolai, M. M., Witt, B., Friese, S., Michaelis, V., Hölz-Armstrong, L., Martin, M., ... & Bornhorst, J. (2022). Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells. Food and Chemical Toxicology, 161, 112822. ‏
Nkpaa, K. W., Nkpaa, B. B., Amadi, B. A., Ogbolosingha, A. J., Wopara, I., Belonwu, D. C., ... & Orisakwe, O. E. (2022). Selenium abates manganese–induced striatal and hippocampal toxicity via abrogation of neurobehavioral deficits, biometal accumulation, oxidative stress, inflammation, and caspase-3 activation in rats. Psychopharmacology, 1-14.‏
O’Neal, S. L., & Zheng, W. (2015). Manganese toxicity upon overexposure: a decade in review. Current environmental health reports, 2, 315-328.‏
Post, J. E. (1999). Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences, 96(7), 3447-3454.‏
Pourhassan, B., Beigzadeh, Z., Nasirzadeh, N., & Karimi, A. (2024). Application of multiple occupational health risk assessment models for metal fumes in welding process. Biological trace element research, 202(3), 811-823.‏
Saidi, I., Nawel, N., & Djebali, W. (2014). Role of selenium in preventing manganese toxicity in sunflower (Helianthus annuus) seedling. South African journal of botany, 94, 88-94.‏
Singh, S. P., Kumari, M., Kumari, S. I., Rahman, M. F., Mahboob, M., & Grover, P. (2013). Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. Journal of Applied Toxicology, 33(10), 1165-1179.‏
Soldin, O.P.& Aschner, M. (2007). Effects of manganese on thyroid hormone homeostasis. Neurotoxic. 28(5): 951- 956 .
Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.& Flohe, L. (1999). Dual function of the selenoprotein GSH-PX during sperm maturation. Sci. 285: 1393-1397.
U.S. EPA (U.S. Environmental Protection Agency). (2003). Water quality analysis of heavy metals for the Loch Raven Reservoir Impoundment in Baltimore County, Maryland. 1-8 .
U.S. EPA. (1995). Manganese. EPA integrated risk information system 7439-96-5. Washington, D.C.: Environmental Protection Agency; 1995
Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In Microorganisms for sustainable environment and health (pp. 419-429). Elsevier.‏
Valentine, H., Daugherity, E. K., Singh, B., & Maurer, K. J. (2012). The experimental use of Syrian hamsters. In The laboratory rabbit, guinea pig, hamster, and other rodents (pp. 875-906). Academic Press.‏
WHO Air Pollution. WHO. Available online at: http://www.who.int/airpollution/en/ (accessed , 20204).
You, Z., Hou, G., & Wang, M. (2024). Heterogeneous relations among environmental regulation, technological innovation, and environmental pollution. Heliyon, 10(7).
‏ Zhao, M., Ge, X., Xu, J., Li, A., Mei, Y., Yin, G., ... & Xu, Q. (2022). Association between urine metals and liver function biomarkers in Northeast China: a cross-sectional study. Ecotoxicology and Environmental Safety, 231, 113163.‏
Zoni, S., Bonetti, G., & Lucchini, R. (2012). Olfactory functions at the intersection between environmental exposure to manganese and Parkinsonism. Journal of Trace Elements in Medicine and Biology, 26(2-3), 179-182.‏
منشور
2024-09-29
كيفية الاقتباس
كرزونع. (2024). دراسة تأثير السيلينيوم في تقليل الأثر السمي للمنغنيز عند الهامستر السوري. مجلة جامعة حماة, 7(السادس). استرجع في من https://hama-univ.edu.sy/ojs/index.php/huj/article/view/2245