الاستجابات الفيزيولوجية الدموية (RBCs-Hb) عند الخيول العربية الأصيلة ودور مكمل إنرجي فورت في تحسينها قبل وبعد السباق
الملخص
الملخص باللغة العربية:
أُجريَّ هذا البحثِ لدراسةِ الاستجابات الفيزيولوجية في الخيول العربية الأصيلة من خلالِ معرفة التغيرات الدموية في مستوى تركيز خضاب الدم وعدد الكريات الحمر قبل وبعد سباق 1600 متر ومعرفة تأثير الخلاصات الطبية لنباتات الجينسنغ والأملج والقسط الهندي والقولنجان وبذور الكرفس والخردل بالإضافة إلى مجموعة فيتامين ب والعسل الموجودة ضمن مُستحضر أو مُكمِل إنرجي فورت في تحسين الاستجابات الفيزيولوجية الدموية والتخفيف من بعض آثارِ التَعب العضلي بعد السباق.
وُزعتْ الخيول إلى خمسة مجموعات، ضمت كل مجموعة ستة خيول بأوزان متقاربة وفق التالي:
- المجموعة الأولى (G1): مجموعة الشاهد الطبيعي تُركت الخيولُ دونَ إجراء أي سباق أو تمرين رياضي، لمعرفةِ القيم الطبيعيةِ للمتغيرات الفيزيولوجية المدروسة (عدد الكريات الحمر، خضاب الدم)، واعتُبرت على أنها مجموعة شاهد سلبي.
- المجموعة الثانية(G2) : خَضَعتْ الخيول لسباق سرعة بمسافة (1600) متر، ثم جُمعتْ منها عينات الدم بعد السباق مباشرةً، حيث اعتُبرتْ هذه المجموعة شاهد إيجابي للمجموعة الثالثة.
- المجموعة الثالثة(G3) : أُعطيتْ الخيولُ في هذه المجموعة مكمل إنرجي فورت بجرعة مقدارها 2 مل/100 كغ وزن حي قبل سباق 1600 متر مباشرةً، ثم جُمعت منها عينات الدم بعد السباق مباشرةً.
- المجموعة الرابعة(G4) : خَضَعتْ الخيولُ لسباق سرعة بمسافة (1600) متر، ثم جُمعت منها عينات الدم بعد السباق مباشرةً، حيث اُعتبرت هذه المجموعة شاهد إيجابي للمجموعة الخامسة.
- المجموعة الخامسة (G5): خَضَعت الخيول في هذه المجموعة لسباق سرعة مسافة (1600) متر، ثم أُعطيت مُكمِلُ إنرجي فورت بجرعة مقدارها 2 مل/100 كغ وزن حي بعد السباق مباشرةً، وبعَدَ نصف ساعةً من إعطاء المُكمل جُمِعَتْ عينات الدم من هذه المجموعة.
تمَّ الحصول على جميع العينات الدموية من الوريد الوداجي.
أظهرت النتائج: حدوثَ تغيراتٍ حقيقيةٍ في الاستجابات الفيزيولوجية تمثلت بحدوثِ ارتفاع معنوي (P≤0.0001) في متوسطات تركيز خضاب الدم وعدد الكريات الحمر بعد السباق في مجموعات الشاهد الإيجابي (G4-G2) عندَ مقارنتهما مع مجموعة الشاهد الطبيعي (G1)، وحدوثِ انخفاض معنوي (P≤0.0001) في متوسطات تركيز خضاب الدم وعدد الكريات الحمر بعدَ السباق في مجموعات السباق (G5-G3) المعطاة مُكمِل إنرجي فورت قبل وبعدَ السباق عندَ مقارنتهما مع مجموعة الشاهد الإيجابي (G2-G4).
المراجع
Alaerjani, W. M. A., Abu-Melha, S., Alshareef, R. M. H., Al-Farhan, B. S., Ghramh, H. A., Al-Shehri, B. M. A., Bajaber, M. A., Khan, K. A., Alrooqi, M. M., Modawe, G. A., & Mohammed, M. E. A. (2022). Biochemical Reactions and Their Biological Contributions in Honey. Molecules (Basel, Switzerland), 27(15), 4719. https://doi.org/10.3390/molecules27154719
Al-Waili N. S. (2003). Effects of daily consumption of honey solution on hematological indices and blood levels of minerals and enzymes in normal individuals. Journal of medicinal food, 6(2), 135–140. https://doi.org/10.1089/109662003322233549
Anderson, M. G. (1975). The influence of exercise on serum enzyme levels in the horse. Equine Veterinary Journal, 7(3), 160-165.
Andriichuk, A., Tkachenko, H., Łukaszewicz, J., Kurhaluk, N., & Tkachova, I. (2014). Physical condition of horses from recreational Crimean and Pomeranian regions. Globalization and problems of environmental protection.(Eds) T. Noch, J. Saczuk, A. Wesołowska. Publisher by Gdańsk Higher School of Administration, Gdańsk, 314-361.
Arabian Racing Organization UK. Racing data, racing data ARO racing. (2019). https://www.aroracing.co.uk/. [Accessed 28 January 2023].
Arfuso, F., Rizzo, M., Giannetto, C., Giudice, E., Cirincione, R., Cassata, G., Cicero, L., et al. (2022). Oxidant and Antioxidant Parameters’ Assessment Together with Homocysteine and Muscle Enzymes in Racehorses: Evaluation of Positive Effects of Exercise. Antioxidants, 11(6), 1176. MDPI AG. Retrieved from http://dx.doi.org/10.3390/antiox11061176
Assenza, A., Marafioti, S., Congiu, F., Giannetto, C., Fazio, F., Bruschetta, D., & Piccione, G. (2016). Serum muscle-derived enzymes response during show jumping competition in horse. Veterinary world, 9(3), 251–255. https://doi.org/10.14202/vetworld.2016.251-255
Bahou, W. F., Marchenko, N., & Nesbitt, N. M. (2023). Metabolic Functions of Biliverdin IXβ Reductase in Redox-Regulated Hematopoietic Cell Fate. Antioxidants (Basel, Switzerland), 12(5), 1058. https://doi.org/10.3390/antiox12051058
Bazzano M, Rizzo M, Arfuso F, Giannetto C, Fazio F, Piccione G. (2015). Increase in erythrocyte osmotic resistance following polyunsaturated fatty acids (PUFA) supplementation in show jumper horses. Livest Sci. 181:236–41. doi: 10.1016/j.livsci.2015.08.011 [CrossRef] [Google Scholar]
Billings, A., Quinn, J. K., & Spoor, M. S. (2021). Laboratory Markers of Muscle Injury. Equine Hematology, Cytology, and Clinical Chemistry, 119-141.
Bontemps, B., Vercruyssen, F., Gruet, M., & Louis, J. (2020). Downhill Running: What Are The Effects and How Can We Adapt? A Narrative Review. Sports medicine (Auckland, N.Z.), 50(12), 2083–2110. https://doi.org/10.1007/s40279-020-01355-z
Bos, A., Compagnie, E., & Lindner, A. (2018). Effect of racing on blood variables in Standardbred horses. Veterinary Clinical Pathology, 47(4), 625-628.
Boyd, J. W. (1985) The mechanisms relating to increases in plasma enzymes and isoenzymes in diseases of animals. Vet. clin. Path. 12,9-24.
Brancaccio, P., Lippi, G., & Maffulli, N. (2010). Biochemical markers of muscular damage. Clinical chemistry and laboratory medicine, 48(6), 757–767. https://doi.org/10.1515/CCLM.2010.179
Brun, J. F., Varlet-Marie, E., Myzia, J., Raynaud de Mauverger, E., & Pretorius, E. (2021). Metabolic Influences Modulating Erythrocyte Deformability and Eryptosis. Metabolites, 12(1), 4. https://doi.org/10.3390/metabo12010004
Buckley, P., Buckley, D. J., Freire, R., & Hughes, K. J. (2022). Pre-race and race management impacts serum muscle enzyme activity in Australian horses. Equine veterinary journal, 54(5), 895–904. https://doi.org/10.1111/evj.13519
Burk, A. O., & Williams, C. A. (2008). Feeding management practices and supplement use in top-level event horses. Comparative Exercise Physiology, 5(02), 85. doi:10.1017/s1478061508062786
Buzala, M., Krumrych, W., & Janicki, B. (2015). Usefulness of Creatine Kinase Activity Determination for Assessing the Effects of Physical Effort in Horses. Pakistan Veterinary Journal, 35(3).
Cecchini, S., Paciolla, M., Caputo, A. R., & Bavoso, A. (2014). Antioxidant Potential of the Polyherbal Formulation "ImmuPlus": A Nutritional Supplement for Horses. Veterinary medicine international, 2014, 434239. https://doi.org/10.1155/2014/434239
Cosgrove, E. J., Sadeghi, R., Schlamp, F., Holl, H. M., Moradi-Shahrbabak, M., Miraei-Ashtiani, S. R., … Brooks, S. A. (2020). Genome Diversity and the Origin of the Arabian Horse. Scientific Reports, 10(1). doi:10.1038/s41598-020-66232-1
Coyne, C. P., Carlson, G. P., Spensley, M. S., & Smith, J. (1990). Preliminary investigation of alterations in blood viscosity, cellular composition, and electrophoresis plasma protein fraction profile after competitive racing activity in Thoroughbred horses. American Journal of Veterinary Research, 51(12), 1956-1963.
Cywinska, A., Szarska, E., Kowalska, A., Ostaszewski, P., & Schollenberger, A. (2011). Gender differences in exercise--induced intravascular haemolysis during race training in thoroughbred horses. Research in veterinary science, 90(1), 133–137. https://doi.org/10.1016/j.rvsc.2010.05.004
Dash, S., Panda, M. K., Singh, M. C., Jit, B. P., Singh, Y. D., & Patra, J. K. (2020). Bioactive Molecules from the Alpinia Genus: A Comprehensive Review. Current pharmaceutical biotechnology, 21(14), 1412–1421. https://doi.org/10.2174/1389201021666200510002409
Dintenfass, L., & Fu-lung, L. (1982). Plasma and blood viscosities, and aggregation of red cells in racehorses. Clinical Physics and Physiological Measurement, 3(4), 293.
Dockalova, H., Baholet, D., Batik, A., Zeman, L., & Horky, P. (2022). Effect of Milk Thistle (Silybum Marianum) Seed Cakes by Horses Subjected to Physical Exertion. Journal of Equine Veterinary Science, 113, 103937.
Drabkin, D. L., & Austin, J. H. (1932). Spectrophotometric studies: I. Spectrophotometric constants for common hemoglobin derivatives in human, dog, and rabbit blood. Journal of Biological Chemistry, 98(2), 719-733.
Ducharme, N. G., Fortier, L. A., Kraus, M. S., Hobo, S., Mohammed, H. O., McHugh, M. P., Hackett, R. P., Soderholm, L. V., & Mitchell, L. M. (2009). Effect of a tart cherry juice blend on exercise-induced muscle damage in horses. American journal of veterinary research, 70(6), 758–763. https://doi.org/10.2460/ajvr.70.6.758
Dżugan, M., Tomczyk, M., Sowa, P., & Grabek-Lejko, D. (2018). Antioxidant Activity as Biomarker of Honey Variety. Molecules (Basel, Switzerland), 23(8), 2069. https://doi.org/10.3390/molecules23082069
Elghandour, M. M., Reddy, P. R. K., Salem, A. Z., Reddy, P. P. R., Hyder, I., Barbabosa-Pliego, A., & Yasaswini, D. (2018). Plant bioactives and extracts as feed additives in horse nutrition. Journal of Equine Veterinary Science, 69, 66-77.
Ememe, M. U., Mshelia, W. P., & Ayo, J. O. (2015). Ameliorative effects of resveratrol on oxidative stress biomarkers in horses. Journal of Equine Veterinary Science, 35(6), 518-523.
Fazio, F., Assenza, A., Tosto, F., Casella, S., Piccione, G., & Caola, G. (2017). Training and haematochemical profile in Thoroughbreds and Standardbreds: A longitudinal study. Livestock Science, 141(2-3), 221-226.
Fedde, M. R., & Erickson, H. H. (1998). Increase in blood viscosity in the sprinting horse: can it account for the high pulmonary arterial pressure?. Equine veterinary journal, 30(4), 329-334.
Ferguson, B. S., Rogatzki, M. J., Goodwin, M. L., Kane, D. A., Rightmire, Z., & Gladden, L. B. (2018). Lactate metabolism: historical context, prior misinterpretations, and current understanding. European journal of applied physiology, 118(4), 691–728. https://doi.org/10.1007/s00421-017-3795-6
Ferlazzo, A., Cravana, C., Fazio, E., & Medica, P. (2020). The different hormonal system during exercise stress coping in horses. Veterinary world, 13(5), 847–859. https://doi.org/10.14202/vetworld.2020.847-859
Fielding, C. L., & Magdesian, K. G. (2011). Review of packed cell volume and total protein for use in equine practice. In Proceedings of the 57th Annual Convention of the American Association of Equine Practitioners (Vol. 318, p. 321).
Fontanel, M., Todd, E., Drabbe, A., Ropka-Molik, K., Stefaniuk-Szmukier, M., Myćka, G., & Velie, B. D. (2020). Variation in the SLC16A1 and the ACOX1 genes is associated with gallop racing performance in Arabian horses. Journal of Equine Veterinary Science, 103202. doi:10.1016/j.jevs.2020.103202
Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature reviews. Drug discovery, 20(9), 689–709. https://doi.org/10.1038/s41573-021-00233-1
Fowler, W. M., Jr, Chowdhury, S. R., Pearson, C. M., Gardner, G., & Bratton, R. (1962). Changes in serum enzyme levels after exercise in trained and untrained subjects. Journal of applied physiology, 17, 943–946. https://doi.org/10.1152/jappl.1962.17.6.943
Franciscato, C., Lopes, S. T. D. A., Veiga, Â. P. M., Martins, D. B., Emanuelli, M. P., & Oliveira, L. S. S. (2006). AST, CK and GGT enzymes serum activities in Crioulo horses. Pesquisa Agropecuária Brasileira, 41, 1561-1565.
Frauenfelder, H. C., Rossdale, P. D., Ricketts, S. W., & Allen, W. R. (1986). Changes in serum muscle enzyme levels associated with training schedules and stage of the oestrous cycle in Thoroughbred racehorses. Equine veterinary journal, 18(5), 371–374. https://doi.org/10.1111/j.2042-3306.1986.tb03657.x
Freestone, J. F., Kamerling, S. G., Church, G., Bagwell, C., & Hamra, J. (2017). Exercise induced changes in creatine kinase and aspartate aminotransferase activities in the horse: effects of conditioning, exercise tests and acepromazine. Journal of Equine Veterinary Science, 9(5), 275-280.
Gardner, G. W., Bratton, R., Chowdhury, S. R., Fowler, W. M., Jr, & Pearson, C. M. (1964). Effect Of Exercise On Serum Enzyme Levels In Trained Subjects. The Journal of sports medicine and physical fitness, 4, 103–110.
Gardner D. S. (2016). Historical progression of racing performance in the Thoroughbred horse and man. Equine veterinary journal, 38(6), 581–583. https://doi.org/10.2746/042516406x156514
Gella FJ, Olivella T, Cruz Pastor M, Arenas J, Moreno R, Durban R and Gómez JA. (1985). A simple procedure for routine determination of aspartate aminotransferase and alanine aminotransferase with pyridoxal phosphate. Clin Chim Acta 1985; 153: 241-247
Geor, R. J. (2006). The role of nutritional supplements and feeding strategies in equine athletic performance. Equine and Comparative Exercise Physiology, 3(03), 109–119. doi:10.1017/ecp200690
Gim, J.-A., Ayarpadikannan, S., Eo, J., Kwon, Y.-J., Choi, Y., Lee, H.-K., … Kim, H.-S. (2014). Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses. Gene, 547(1), 152–158. doi:10.1016/j.gene.2014.06.051
Gladden L. B. (2004). Lactate metabolism: a new paradigm for the third millennium. The Journal of physiology, 558(Pt 1), 5–30. https://doi.org/10.1113/jphysiol.2003.058701
Gladden, L. B. (2008). Cause and effect. Journal of Applied Physiology (Bethesda, Md.: 1985), 105(1), 364-364. DOI: 10.1152/japplphysiol.zdg-8016-pcpcomm.2008. PMID: 18680793
Grigore, A., Vulturescu, V., Neagu, G., Ungureanu, P., Panteli, M., & Rasit, I. (2022). Antioxidant-Anti-Inflammatory Evaluation of a Poly herbal Formula. Pharmaceuticals (Basel, Switzerland), 15(2), 114. https://doi.org/10.3390/ph15020114
Guyton, A. C., & Hall, J. E. (2021). Textbook of medical physiology 14th edition. Rio de. ISBN: 9780323597128. Imprint: Elsevier
Hanzawa K, Kai M, Hiraga A, Watanabe S. (2021). Fragility of red cells during exercise is affected by blood pH and temperature. Equine Vet J. 31:610–1. [PubMed] [Google Scholar]
Hanzawa, K., & Watanabe, S. (2020). Changes in osmotic fragility of erythrocytes during exercise in athletic horses. Journal of Equine Science, 11(3), 51-61.
Harris, P. A., Snow, D. H., Greet, T. R. C., & Rossdale, P. D. (1990). Some factors influencing plasma AST/CK activities in thoroughbred racehorses. Equine Veterinary Journal, 22(S9), 66-71.
Harris, P. A., Marlin, D. J., & Gray, J. (1998). Plasma aspartate aminotransferase and creatine kinaseactivities in thoroughbred racehorses in relation to age, sex, exercise and training. The Veterinary Journal, 155(3), 295–304. doi:10.1016/s1090-0233(05)80026-7
Harty, P. S., Zabriskie, H. A., Erickson, J. L., Molling, P. E., Kerksick, C. M., & Jagim, A. R. (2018). Multi-ingredient pre-workout supplements, safety implications, and performance outcomes: a brief review. Journal of the International Society of Sports Nutrition, 15(1), 41.
Hasanovich, K. V., & Vladimirovna, P. L. (2016). Hematological Parameters Of 3-Year-Old Purebred Arabian Race Horses In Different Periods Of Horse Racing Season. World science, 3(5 (9)), 9-11.
Hill, A. V. (1914). The oxidative removal of lactic acid. J. Physiol, 48, 10-11.
Hills, S. P., Mitchell, P., Wells, C., & Russell, M. (2019). Honey Supplementation and Exercise: A Systematic Review. Nutrients, 11(7), 1586. https://doi.org/10.3390/nu11071586
Hinchcliff, K. W., Kaneps, A. J., & Geor, R. J. (Eds.). (2008). Equine exercise physiology: the science of exercise in the athletic horse. Elsevier Health Sciences.
Hinchcliff, K. W., Kaneps, A. J., & Geor, R. J. (2013). Equine Sports Medicine and Surgery E-Book. Elsevier Health Sciences.
Hodgson, D. R., McGowan, C. M., & McKeever, K. (2014). The athletic horse: principles and practice of equine sports medicine. Elsevier Health Sciences.
Householder, D. D., & Douglas, R. H. (2005). Total blood volume and thoroughbred racing performance. Journal of Equine Veterinary Science, 25(1), 14-15.
Hueston, C. M., & Deak, T. (2014). The inflamed axis: the interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic-pituitary-adrenal axis. Physiology & behavior, 124, 77–91. https://doi.org/10.1016/j.physbeh.2013.10.035
Hurcombe S. D. A. (2020). Clinical Pathology of the Racehorse. The Veterinary clinics of North America. Equine practice, 36(1), 135–145. https://doi.org/10.1016/j.cveq.2019.12.004
Hyldahl, R. D., Chen, T. C., & Nosaka, K. (2017). Mechanisms and Mediators of the Skeletal Muscle Repeated Bout Effect. Exercise and sport sciences reviews, 45(1), 24–33. https://doi.org/10.1249/JES.0000000000000095
Hyyppä, S. (2005). Endocrinal responses in exercising horses. Livestock Production Science, 92(2), 113-121.
IFCC methods for the measurement of catalytic concentration of enzymes. Part 7: IFCC method for Creatine kinase. JIFCC 1989; 1: 130-13
Jagim, A. R., Camic, C. L., & Harty, P. S. (2019). Common habits, adverse events, and opinions regarding pre-workout supplement use among regular consumers. Nutrients, 11(4), 855.
Jesuthasan, A., Ali, A., Lee, J. K. W., & Rutherfurd-Markwick, K. (2022). Assessment of Changes in Physiological Markers in Different Body Fluids at Rest and after Exercise. Nutrients, 14(21), 4685. https://doi.org/10.3390/nu14214685
Johnson, R. A., Johnson, P. J., Megarani, D. V., Patel, S. D., Yaglom, H. D., Osterlind, S., … Crowder, S. M. (2017). Horses Working in Therapeutic Riding Programs: Cortisol, Adrenocorticotropic Hormone, Glucose, and Behavior Stress Indicators. Journal of Equine Veterinary Science, 57, 77–85. doi:10.1016/j.jevs.2017.05.006.
Kedzierski, W., & Bergero, D. (2006). Comparison of plasma biochemical parameters in Thoroughbred and Purebred Arabian horses during the same-intensity exercise. Polish journal of veterinary sciences, 9(4), 233–238.
Kerksick, C. M., Wilborn, C. D., Roberts, M. D., Smith-Ryan, A., Kleiner, S. M., Jäger, R., Collins, R., Cooke, M., Davis, J. N., Galvan, E., Greenwood, M., Lowery, L. M., Wildman, R., Antonio, J., & Kreider, R. B. (2018). ISSN exercise & sports nutrition review update: research & recommendations. Journal of the International Society of Sports Nutrition, 15(1), 38. https://doi.org/10.1186/s12970-018-0242-y
Khasanovich, K. V., & Vladimirovna, P. L. (2016). Haematological parameters of 2-year-old purebred Arabian racehorses in different periods of horse racing season. European science review, (3-4), 21-23.
Kienzle, E., Freismuth, A., & Reusch, A. (2006). Double-blind placebo-controlled vitamin E or selenium supplementation of sport horses with unspecified muscle problems. An example of the potential of placebos. The Journal of nutrition, 136(7 Suppl), 2045S–2047S. https://doi.org/10.1093/jn/136.7.2045S
Kong, S., Li, P., Verpoorte, R., Wang, J., Zhu, C., Dai, Y., & Chen, S. (2022). Synergistic mechanism for the bioactivity fortification of licorice by honey. Journal of ethnopharmacology, 289, 115048. https://doi.org/10.1016/j.jep.2022.115048
Krumrych, W. (2006). Variability of clinical and haematological indices in the course of training exercise in jumping horses. BULLETIN-VETERINARY INSTITUTE IN PULAWY, 50(3), 391.
Łagowska, K., Podgórski, T., Celińska, E., & Kryściak, J. (2017). A comparison of the effectiveness of commercial and natural carbohydrate–electrolyte drinks. Science & Sports, 32(3), 160-164.
Li, H., Guo, L., Ding, X., An, Q., Wang, L., Hao, S., Li, W., Wang, T., Gao, Z., Zheng, Y., & Zhang, D. (2023). Molecular Networking, Network Pharmacology, and Molecular Docking Approaches Employed to Investigate the Changes in Ephedrae Herba before and after Honey-Processing. Molecules (Basel, Switzerland), 27(13), 4057. https://doi.org/10.3390/molecules27134057
Lim S. K. (2001). Consequences of haemolysis without haptoglobin. Redox report : communications in free radical research, 6(6), 375–378. https://doi.org/10.1179/135100001101536571
Lippi, G., & Sanchis-Gomar, F. (2019). Epidemiological, biological and clinical update on exercise-induced hemolysis. Annals of translational medicine, 7(12), 270. https://doi.org/10.21037/atm.2019.05.41
Lippi, G., Favaloro, E. J., & Franchini, M. (2018). Haemolysis index for the screening of intravascular haemolysis: a novel diagnostic opportunity?. Blood transfusion = Trasfusione del sangue, 16(5), 433–437. https://doi.org/10.2450/2018.0045-18
Lippi, G., Plebani, M., & Favaloro, E. J. (2013). Interference in coagulation testing: focus on spurious hemolysis, icterus, and lipemia. Seminars in thrombosis and hemostasis, 39(3), 258–266. https://doi.org/10.1055/s-0032-1328972
Lin, C. H., Lin, Y. A., Chen, S. L., Hsu, M. C., & Hsu, C. C. (2022). Ginseng Attenuates Exercise-Induced Muscle Damage via the Modulation of Lipid Peroxidation and Inflammatory Adaptation in Males. Nutrients, 14(1), 78. https://doi.org/10.3390/nu14010078
Lu, G., Liu, Z., Wang, X., & Wang, C. (2021). Recent Advances in Panax ginseng C.A. Meyer as a Herb for Anti-Fatigue: An Effects and Mechanisms Review. Foods (Basel, Switzerland), 10(5), 1030. https://doi.org/10.3390/foods10051030
Ma, G. D., Chiu, C. H., Hsu, Y. J., Hou, C. W., Chen, Y. M., & Huang, C. C. (2017). Changbai Mountain Ginseng (Panax ginseng C.A. Mey) Extract Supplementation Improves Exercise Performance and Energy Utilization and Decreases Fatigue-Associated Parameters. Molecules (Basel, Switzerland), 22(2), 237. https://doi.org/10.3390/molecules22020237
Mack, S. J., Kirkby, K., Malalana, F., & McGowan, C. M. (2014). Elevations in serum muscle enzyme activities in racehorses due to unaccustomed exercise and training. The Veterinary record, 174(6), 145. https://doi.org/10.1136/vr.101669
Mactaggart, G., Waran, N., & Phillips, C. J. C. (2021). Identification of Thoroughbred Racehorse Welfare Issues by Industry Stakeholders. Animals : an open access journal from MDPI, 11(5), 1358. https://doi.org/10.3390/ani11051358
Maines M. D. (2001). Overview of heme degradation pathway. Current protocols in toxicology, Chapter 9, . https://doi.org/10.1002/0471140856.tx0901s00
Mairbäurl H. (2013). Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Frontiers in physiology, 4, 332. https://doi.org/10.3389/fphys.2013.00332
Mami, S., Khaje, G., Shahriari, A., & Gooraninejad, S. (2019). Evaluation of Biological Indicators of Fatigue and Muscle Damage in Arabian Horses After Race. Journal of equine veterinary science, 78, 74–78. https://doi.org/10.1016/j.jevs.2019.04.007
Marañón, G., Muñoz-Escassi, B., Manley, W., García, C., Cayado, P., de la Muela, M. S., Olábarri, B., León, R., & Vara, E. (2008). The effect of methyl sulphonyl methane supplementation on biomarkers of oxidative stress in sport horses following jumping exercise. Acta veterinaria Scandinavica, 50(1), 45. https://doi.org/10.1186/1751-0147-50-45 Masini A, Tedeschi D, Baragli P, Sighieri C, Lubas G. Exercise-induced intravascular haemolysis in standardbred horses. Comp Clin Pathol. (2003) 12:45–8. doi: 10.1007/s00580-002-0470-y [CrossRef] [Google Scholar]
Maśko, M., Domino, M., Jasiński, T., & Witkowska-Piłaszewicz, O. (2021). The Physical Activity-Dependent Hematological and Biochemical Changes in School Horses in Comparison to Blood Profiles in Endurance and Race Horses. Animals : an open access journal from MDPI, 11(4), 1128. https://doi.org/10.3390/ani11041128
McGowan C. (2008). Clinical pathology in the racing horse: the role of clinical pathology in assessing fitness and performance in the racehorse. The Veterinary clinics of North America. Equine practice, 24(2), 405–vii. https://doi.org/10.1016/j.cveq.2008.03.001
McKeever, K. H., Hinchcliff, K. W., Reed, S. M., & Robertson, J. T. (1993a). Role of decreased plasma volume in hematocrit alterations during incremental treadmill exercise in horses. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 265(2), R404-R408.
McKeever, K. H., Hinchcliff, K. W., Reed, S. M., & Robertson, J. T. (1993b). Plasma constituents during incremental treadmill exercise in intact and splenectomised horses. Equine Veterinary Journal, 25(3), 233-236.
Mercier, Q., & Aftalion, A. (2020). Optimal speed in Thoroughbred horse racing. PloS one, 15(12), e0235024. https://doi.org/10.1371/journal.pone.0235024
Meyerhof, O. (1920). Die Energieumwandlungen im Muskel. Pflügers Archiv European Journal of Physiology, 182(1), 232-283.
Misztal, T., & Tomasiak, M. (2021). Patofizjologiczne konsekwencje hemolizy. Rola wolnej hemoglobiny [Pathophysiological consequences of hemolysis. Role of cell-free hemoglobin]. Postepy higieny i medycyny doswiadczalnej (Online), 65, 627–639. https://doi.org/10.5604/17322693.961007
Murray, J. M. D., Hanna, E., & Hastie, P. (2021). Equine dietary supplements: an insight into their use and perceptions in the Irish equine industry. Irish Veterinary Journal, 71(1). doi:10.1186/s13620-018-0115-3
Muñoz, A., Riber, C., Santisteban, R., Lucas, R. G., & Castejón, F. M. (2002). Effect of training duration and exercise on blood-borne substrates, plasma lactate and enzyme concentrations in Andalusian, Anglo-Arabian and Arabian breeds. Equine veterinary journal. Supplement, (34), 245–251. https://doi.org/10.1111/j.2042-3306.2002.tb05427.x
Nadda, R. K., Ali, A., Goyal, R. C., Khosla, P. K., & Goyal, R. (2020). Aucklandia costus (Syn. Saussurea costus): Ethnopharmacology of an endangered medicinal plant of the himalayan region. Journal of ethnopharmacology, 263, 113199. https://doi.org/10.1016/j.jep.2020.113199
Naryzny, S. N., & Legina, O. K. (2021). Haptoglobin as a Biomarker. Biochemistry (Moscow) Supplement. Series B, Biomedical chemistry, 15(3), 184–198. https://doi.org/10.1134/S1990750821030069
National Research Council. 2017. Equine Blood Biochemistry. 6th ed. USA: Washington: The National Academies Press.
(NCBI): National Center for Biotechnology Information . PubChem compound summary for CID 145068, nitric oxide. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Nitric-oxide. (2023). (Accessed 1 August 2023).
Nemec Svete, A., Vovk, T., Bohar Topolovec, M., & Kruljc, P. (2021). Effects of Vitamin E and Coenzyme Q10 Supplementation on Oxidative Stress Parameters in Untrained Leisure Horses Subjected to Acute Moderate Exercise. Antioxidants (Basel, Switzerland), 10(6), 908. https://doi.org/10.3390/antiox10060908
Novosadova, J. (1977). The changes in hematocrit, hemoglobin, plasma volume and proteins during and after different types of exercise. European journal of applied physiology and occupational physiology, 36(3), 223-230.
Octura, J. E. R., Lee, K. J., Cho, H. W., Vega, R. S., Choi, J., Park, J. W., ... & Cho, B. W. (2018). Elevation of blood creatine kinase and selected blood parameters after Race in thoroughbred racehorses (Equus caballus L.). J Res Agric Anim Sci, 2, 7-13.
Önder, H., Şen, U., Piwczyński, D., Kolenda, M., Drewka, M., Abacı, S. H., & Takma, Ç. (2022). Comparison of Random Regression Models with Different Order Legendre Polynomials for Genetic Parameter Estimation on Race Completion Speed of Arabian Horses. Animals, 12(19), 2630. MDPI AG. Retrieved from http://dx.doi.org/10.3390/ani12192630
Packirisamy, R. M., Bobby, Z., Panneerselvam, S., Koshy, S. M., & Jacob, S. E. (2018). Metabolomic Analysis and Antioxidant Effect of Amla (Emblica officinalis) Extract in Preventing Oxidative Stress-Induced Red Cell Damage and Plasma Protein Alterations: An In Vitro Study. Journal of medicinal food, 21(1), 81–89. https://doi.org/10.1089/jmf.2017.3942
Pakula, P. D., Halama, A., Al-Dous, E. K., Johnson, S. J., Filho, S. A., Suhre, K., & Vinardell, T. (2023). Characterization of exercise-induced hemolysis in endurance horses. Frontiers in veterinary science, 10, 1115776. https://doi.org/10.3389/fvets.2023.1115776
Pandey, M. M., Rastogi, S., & Rawat, A. K. (2007). Saussurea costus: botanical, chemical and pharmacological review of an ayurvedic medicinal plant. Journal of ethnopharmacology, 110(3), 379–390. https://doi.org/10.1016/j.jep.2006.12.033
Paulsen, G., Ramer Mikkelsen, U., Raastad, T., & Peake, J. M. (2012). Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise?. Exercise immunology review, 18.
Peake, J. M., Neubauer, O., Della Gatta, P. A., & Nosaka, K. (2017). Muscle damage and inflammation during recovery from exercise. Journal of applied physiology (Bethesda, Md. : 1985), 122(3), 559–570. https://doi.org/10.1152/japplphysiol.00971.2016
Pernow, J., Mahdi, A., Yang, J., & Zhou, Z. (2019). Red blood cell dysfunction: a new player in cardiovascular disease. Cardiovascular research, 115(11), 1596-1605.
Persson, S. G. B. (1967). On blood volume and working capacity in horses. Acta Vet. Scand.(Suppl.), 19, 1-189.
Piccione, G., Fazio, F., Giannetto, C., Assenza, A., & Caola, G. (2007). Oxidative stress in thoroughbreds during official 1800-metre races. Veterinarski Arhiv, 77(3), 219-227.
Piccione, G., Casella, S., Monteverde, V., Giannetto, C., & Caola, G. (2008). Haematological modifications during official 1600 and 2000 meters trot races in Standardbred horses. Acta veterinaria, 58(4), 325-332.
Piccione, G., Giannetto, C., Fazio, F., Di Mauro, S., & Caola, G. (2009). Haematological response to different workload in jumper horses. Bulg. J. Vet. Med, 10(4), 21-28.
Piccione, G., Casella, S., Giannetto, C., Messina, V., Monteverde, V., Caola, G., & Guttadauro, S. (2010). Haematological and haematochemical responses to training and competition in standardbred horses. Comparative clinical pathology, 19, 95-101.
Piccione, G., Fazio, A., & Giudice, E. (2017). Oxidative stress in standardbred horses during official races of 1600 and 2000 meters. Medycyna Weterynaryjna, 63(12), 1554.
Pillai, M. K., Young, D. J., & Bin Hj Abdul Majid, H. M. (2018). Therapeutic Potential of Alpinia officinarum. Mini reviews in medicinal chemistry, 18(14), 1220–1232. https://doi.org/10.2174/1389557517666171002154123
Planchais, C., Noe, R., Gilbert, M., Lecerf, M., Kaveri, S. V., Lacroix-Desmazes, S., Roumenina, L. T., & Dimitrov, J. D. (2023). Oxidized hemoglobin triggers polyreactivity and autoreactivity of human IgG via transfer of heme. Communications biology, 6(1), 168. https://doi.org/10.1038/s42003-023-04535-5
Poortmans J. R. (1984). Exercise and renal function. Sports medicine (Auckland, N.Z.), 1(2), 125–153. https://doi.org/10.2165/00007256-198401020-00003
Pösö, A. R., Soveri, T., & Oksanen, H. E. (1983). The effect of exercise on blood parameters in Standardbred and Finnish-bred horses. Acta vet. scand, 24, 170-184.
Prince, A., Geor, R., Harris, P., Hoekstra, K., Gardner, S., Hudson, C., & Pagan, J. (2002). Comparison of the metabolic responses of trained Arabians and Thoroughbreds during high- and low-intensity exercise. Equine veterinary journal. Supplement, (34), 95–99. https://doi.org/10.1111/j.2042-3306.2002.tb05398.x
Reiter, C. D., Wang, X., Tanus-Santos, J. E., Hogg, N., Cannon, R. O., Schechter, A. N., & Gladwin, M. T. (2002). Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nature medicine, 8(12), 1383-1389.
Rifkind, J. M., Mohanty, J. G., & Nagababu, E. (2015). The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Frontiers in physiology, 5, 500.
Rivero, J. L., & Piercy, R. J. (2008). Muscle physiology: responses to exercise and training. Equine exercise physiology: the science of exercise in the athletic horse, 463.
Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American journal of physiology. Regulatory, integrative and comparative physiology, 287(3), R502–R516. https://doi.org/10.1152/ajpregu.00114.2004
Rossi, R., Lo Feudo, C. M., Zucca, E., Vizzarri, F., Corino, C., & Ferrucci, F. (2021). Innovative Blood Antioxidant Test in Standardbred Trotter Horses. Antioxidants (Basel, Switzerland), 10(12), 2013. https://doi.org/10.3390/antiox10122013
Rother, R. P., Bell, L., Hillmen, P., & Gladwin, M. T. (2005). The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA, 293(13), 1653–1662. https://doi.org/10.1001/jama.293.13.1653
Satué, K., Blanco, O., & Munoz, A. (2009). Age-related differences in the hematological profile of Andalusian broodmares of Carthusian strain. Veterinární medicína, 54(4), 175-182.
Satué, K., Hernández, A., & Muñoz, A. (2012). Physiological factors in the interpretation of equine hematological profile. Hematology–Science and practice, 24, 573-596.
Schagatay, E., Lunde, A., Nilsson, S., Palm, O., & Lodin-Sundström, A. (2020). Spleen contraction elevates hemoglobin concentration at high altitude during rest and exercise. European journal of applied physiology, 120(12), 2693–2704. https://doi.org/10.1007/s00421-020-04471-w
Sellami, M., Slimeni, O., Pokrywka, A., Kuvačić, G., D Hayes, L., Milic, M., & Padulo, J. (2018). Herbal medicine for sports: a review. Journal of the International Society of Sports Nutrition, 15, 14. https://doi.org/10.1186/s12970-018-0218-y
Silva, B., Biluca, F. C., Gonzaga, L. V., Fett, R., Dalmarco, E. M., Caon, T., & Costa, A. C. O. (2021). In vitro anti-inflammatory properties of honey flavonoids: A review. Food Research International, 141, 110086.
Smarsh, D. N., Liburt, N., Streltsova, J., McKeever, K., & Williams, C. A. (2010). Oxidative stress and antioxidant status in intensely exercising horses administered nutraceutical extracts. Equine Veterinary Journal, 42, 317-322.
Snow, D. H., & Harris, P. (1988). Enzymes as markers of physical fitness and training of racing horses. Adv Clin Enzymol, 6, 251-258.
Stožer, A., Vodopivc, P., & Križančić Bombek, L. (2020). Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiological research, 69(4), 565–598. https://doi.org/10.33549/physiolres.934371
Takahashi, Y., Mukai, K., Ohmura, H., & Takahashi, T. (2020). Do muscle activities of M. splenius and M. brachiocepalicus decrease due to exercise-induced fatigue in Thoroughbred horses? Journal of Equine Veterinary Science, 102901. doi:10.1016/j.jevs.2019.102901
Takahashi, Y., Takahashi, T., Mukai, K., & Ohmura, H. (2021). Effects of Fatigue on Stride Parameters in Thoroughbred Racehorses During Races. Journal of Equine Veterinary Science, 101, 103447. Sport Science Division, Equine Research Institute, Japan Racing Association, Tochigi 320-0856, Japan doi:10.1016/j.jevs.2021.10344
Tardy, A. L., Pouteau, E., Marquez, D., Yilmaz, C., & Scholey, A. (2020). Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients, 12(1), 228. https://doi.org/10.3390/nu12010228.
Telford, R. D., Sly, G. J., Hahn, A. G., Cunningham, R. B., Bryant, C., & Smith, J. A. (2003). Footstrike is the major cause of hemolysis during running. Journal of applied physiology (Bethesda, Md. : 1985), 94(1), 38–42. https://doi.org/10.1152/japplphysiol.00631.2001
Terzo, S., Mulè, F., & Amato, A. (2020). Honey and obesity-related dysfunctions: A summary on health benefits. The Journal of Nutritional Biochemistry, 82, 108401.
Tyler, R. D., Cowell, R. L., Clinkenbeard, K. D., & MacAllister, C. G. (1987). Hematologic values in horses and interpretation of hematologic data. Veterinary Clinics of North America: Equine Practice, 3(3), 461-484.
van Zwieten, R., Verhoeven, A. J., & Roos, D. (2014). Inborn defects in the antioxidant systems of human red blood cells. Free radical biology & medicine, 67, 377–386. https://doi.org/10.1016/j.freeradbiomed.2013.11.022
Vazzana, I., Rizzo, M., Dara, S., Niutta, P. P., Giudice, E., & Piccione, G. (2014). Haematological changes following reining trials in quarter horses. Acta Scientiae Veterinariae, 42(1), 1-5.
Vega, R. B., Konhilas, J. P., Kelly, D. P., & Leinwand, L. A. (2017). Molecular mechanisms underlying cardiac adaptation to exercise. Cell metabolism, 25(5), 1012-1026.
Vejjajiva, A., & Teasdale, G. M. (1965). Serum Creatine Kinase and Physical Exercise. British medical journal, 1(5451), 1653–1654. https://doi.org/10.1136/bmj.1.5451.1653
Wakil, Y., Adamu, L., Gulani, I., & Bukar, M. M. (2022). Physical assessment, Hematological and Serum Amyloid A levels Pre and Post exercise in Arabian Horses in Maiduguri and Jere, Borno State. Nigeria: Physical Assessment, Hematological and Serum Amyloid A Levels Pre and Post Exercise in Arabian Horses. International Journal of Equine Science, 1(1), 11-15.
Wang, S., Zhao, Y., Yang, J., Liu, S., Ni, W., Bai, X., Yang, Z., Zhao, D., & Liu, M. (2023). Ginseng polysaccharide attenuates red blood cells oxidative stress injury by regulating red blood cells glycolysis and liver gluconeogenesis. Journal of ethnopharmacology, 300, 115716. https://doi.org/10.1016/j.jep.2022.115716
Wang, T., Zeng, Y., Ma, C., Meng, J., Wang, J., Ren, W., Wang, C., Yuan, X., Yang, X., & Yao, X. (2023). Plasma Non-targeted Metabolomics Analysis of Yili Horses Raced on Tracks With Different Surface Hardness. Journal of equine veterinary science, 121, 104197. Advance online publication. https://doi.org/10.1016/j.jevs.2022.104197
Warren, H. (2017). Supplements for horses. Equine Health, 2017(35), 11-12.
White, A., Estrada, M., Walker, K., Wisnia, P., Filgueira, G., Valdés, F., Araneda, O., Behn, C., & Martínez, R. (2001). Role of exercise and ascorbate on plasma antioxidant capacity in thoroughbred race horses. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 128(1), 99–104. https://doi.org/10.1016/s1095-6433(00)00286-5
Williams, C. A., Kronfeldt, D. S., Hess, T. M., Saker, K. E., Waldron, J. N., Crandell, K. M., Hoffman, R. M., & Harris, P. A. (2004). Antioxidant supplementation and subsequent oxidative stress of horses during an 80-km endurance race. Journal of animal science, 82(2), 588–594. https://doi.org/10.2527/2004.822588x
Williams, C. A., & Lamprecht, E. D. (2008). Some commonly fed herbs and other functional foods in equine nutrition: a review. Veterinary journal (London, England : 1997), 178(1), 21–31. https://doi.org/10.1016/j.tvjl.2007.06.004
Witkowska-Piłaszewicz, O., Maśko, M., Domino, M., & Winnicka, A. (2020). Infrared Thermography Correlates with Lactate Concentration in Blood during Race Training in Horses. Animals, 10(11), 2072. MDPI AG. Retrieved from http://dx.doi.org/10.3390/ani10112072
Witkowska-Piłaszewicz, O., Grzędzicka, J., Seń, J., Czopowicz, M., Żmigrodzka, M., Winnicka, A., Carter, C. (2021). Stress response after race and endurance training sessions and competitions in Arabian horses. Preventive Veterinary Medicine, 188, 105265. doi:10.1016/j.prevetmed.2021.1052.
Yan, X., Li, Q., Jing, L., Wu, S., Duan, W., Chen, Y., Chen, D., & Pan, X. (2022). Current advances on the phytochemical composition, pharmacologic effects, toxicology, and product development of Phyllanthi. Frontiers in pharmacology, 13, 1017268. https://doi.org/10.3389/fphar.2022.1017268
Yonezawa, L. A., Machado, L. P., Silveira, V. F. D., Watanabe, M. J., Saito, M. E., Kitamura, S. S., & Kohayagawa, A. (2010). Malondialdeído e troponina I cardíaca em equinos da raça Puro Sangue Árabe submetidos ao exercício e à suplementação com vitamina E. Ciência Rural, 40, 1321-1326.
Yuan, Y., Hu, Q., Liu, L., Xie, F., Yang, L., Li, Y., Zhang, C., Chen, H., Tang, J., & Shen, X. (2022). Dehydrocostus Lactone Suppresses Dextran Sulfate Sodium-Induced Colitis by Targeting the IKKα/β-NF-κB and Keap1-Nrf2 Signalling Pathways. Frontiers in pharmacology, 13, 817596. https://doi.org/10.3389/fphar.2022.817596
Zha, W., Sun, Y., Gong, W., Li, L., Kim, W., & Li, H. (2022). Ginseng and ginsenosides: Therapeutic potential for sarcopenia. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 156, 113876. https://doi.org/10.1016/j.biopha.2022.113876
Zhang, J., Sun, J., Zhang, Y., Zhang, M., Liu, X., Yang, L., & Yin, Y. (2023). Dehydrocostus lactone inhibits Candida albicans growth and biofilm formation. AMB Express, 13(1), 82. https://doi.org/10.1186/s13568-023-01587-y
Zheng, X., Zhao, Y., Naumovski, N., Zhao, W., Yang, G., Xue, X., Wu, L., Granato, D., Peng, W., & Wang, K. (2022). Systems Biology Approaches for Understanding Metabolic Differences Using 'Multi-Omics' Profiling of Metabolites in Mice Fed with Honey and Mixed Sugars. Nutrients, 14(16), 3445. https://doi.org/10.3390/nu14163445
Zobba, R., Ardu, M., Niccolini, S., Cubeddu, F., Dimauro, C., Bonelli, P., ... & Parpaglia, M. L. P. (2011). Physical, hematological, and biochemical responses to acute intense exercise in polo horses. Journal of Equine Veterinary Science, 31(9), 542-548.
Zouhal, H., Rhibi, F., Salhi, A., Jayavel, A., Hackney, A. C., Saeidi, A., ... & Abderrahman, A. B. (2023). The effects of exercise training on plasma volume variations: A systematic review. International Journal of Sports Medicine.
Zuluaga Cabrera, A. M., Casas Soto, M. J., Martínez Aranzales, J. R., Castillo Vanegas, V. E., Correa Valencia, N. M. D. P., & Arias Gutierrez, M. P. (2022). Hematological, biochemical, and endocrine parameters in acute response to increasing-intensity exercise in Colombian Paso horses. Revista mexicana de ciencias pecuarias, 13(1), 211-224.