تأثير المعاملة بالأسكوربيك على بعض الخصائص البيوكيميائية لنبات التبغ (بصما) تحت ظروف الإجهاد الملحي
الملخص
تعتبر ملوحة التربة عاملاً رئيسياً يؤدي إلى انخفاض إنتاجية المحاصيل المزروعة. الملوحة تسبب الإجهاد التأكسدي
في النباتات عن طريق تعزيز إنتاج أنواع الأكسجين التفاعلية. حمض الأسكوربيك هو أحد مضادات الأكسدة الفعالة وهو أمر ضروري لزيادة تحمل النباتات للملوحة. ومع ذلك، فإن استجابات النباتات لمضادات الأكسدة للملوحة تختلف بشكل كبير في نبات التبغ.
أجريت الدراسة الحالية لمعرفة تأثير حامض الأسكوربيك على نبات التبغ (بصما). الذي ينمو تحت المياه المالحة (12، 16 و18 ميليموز/سم2). وتم تطبيق تركيزات مختلفة من حمض الاسكوربيك (150، 300 و450 ملغ/ل).
تم تقليل سمية الملح بشكل ملحوظ نمو نباتات التبغ. تم تخفيف الانخفاض الكبير في المحتوى من الكلوروفيل والكاروتينات نتيجة الملوحة عن طريق استخدام حمض الأسكوربيك. والذي ساهم في تحسين محتوى النبات من البرولين والماء الأوكسجيني والسكريات الذائبة، ومن بين التركيزات، كان 150مل/ل ملم أكثر فعالية في الحد من إجهاد الملوحة. وبالتالي، يمكن أن نوصي بالرش بحمض الاسكوربيك الذي حسن نمو نبات التبغ تحت ظروف الملوحة.
المراجع
Azooz MM, Shaddad MA, Abdel Latef AA. The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars. Indian J Plant Physi 9: 1-8, 2004.
Balsamo, R.A.; Thomson, W.W. (1995). Salt effect on membrane of the hypodermis and mesophyll cells of Avicennia germinans (Avicenniaceae): a freeze-fracture study. American Journal of Botany 4: 435–440.
Bandehagh A, Toorchi M, Mohammadi A et al. Growth and osmotic adjustment of canola genotypes in response to salinity. J Food Agric Environ 6: 201-208, 2008.
Bates, L.S.; R.P. Waldren and I.D. Tear (1973). Rapid determination of free proline for water-stress studies. Plant and Soil. 39: 205–207.
Camlica, M. and Yaldiz, G. (2021). Analyses and evaluation of the main chemical components in different tobacco (Nicotiana tabacum L.) genotypes. Grasas y Aceites, 72(1), e389-e389.
Celik O, Atak C. The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco verities. Turk J Biol 36: 327-338, 2012.
Ĉerný, M., Habánová, H., Berka, M., Luklová, M. and Brzobohatý, B. (2018).
Hydrogen peroxide: Its role in plant biology and crosstalk with signaling
networks. Int. J. Mol. Sci. 19, 2812.
Dubois, M.; Gilles, K.A.; Hamelton, J.K.; Rebers, P.A.; Smith, F. (1956) . Chlorometric method for determination of sugars and related substrates . Anal. Chem., 28 : 350 – 356.
Gurmani AR, Bano A, Salim M. Effect of growth regulators on growth, yield and ion accumulation of rice (Oryza sativa L.) under salt stress. Pak J Bot 38: 1415-1424, 2006.
Hamada, A. M. 1998. Effect of exogenously added ascorbic acid, thiamin or asprin on photosynthesis and some related activities of drought-stressed wheat plants. In: Photosynthesis: Mechanisms and Effects. Garab, G. (ed.). Kluwer Academic Publishers, Dordrecht. p. 2581-2584.
Hamada, A.M.; Al-Hakimi, A.M.A. (2001). Salicylic acid versus salinity-drought induced stress on wheat seedlings. Rostlinna Vyroba, 47: 444-450.
Hussein MM, Balbaa LK, Gaballah MS. Salicylic acid and salinity effects on growth of maize plants. Res J Agric Biol Sci 3: 321-328, 2007.
Koca H, Bor M, Özdemir F et al. Th e eff ect of salt stress on lipid peroxidation, antioxidative enzymes, and proline content of sesame cultivars. Environ Exp Bot 60: 344-351, 2007.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids pigments of photosynthesis biomebranes. In: Colowick, S.P.; Kaplan, N.O. (eds.). Methods in Enzymology. Academic Press, New York, pp 350–38.
Liu, L., Li, D., Ma, Y., Shen, H., Zhao, S. and Wang, Y. (2021). Combined application of arbuscular mycorrhizal fungi and exogenous melatonin alleviates drought stress and improves plant growth in tobacco seedlings. Journal of Plant Growth Regulation, 40(3), 1074-1087.
Misra, A.N.; Sahu, S. M.; Mishra, M.; Singh, P.; Meera, I.; Das, N.; Kar, M.; Sahu, P. (1997). Sodium chloride induced changes in leaf growth and pigment and protein contents in two rice cultivars. Biologia Plantarum 39: 257–262.
Molinari HBC, Marur CJ, Daros E et al. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plantarum 130: 218- 229, 2007.
Nanda, C., Sarala, K., Nagesh, P. and Ramakrishnan, S. (2021). Heritability and genetic variability studies in the germplasm accessions of flue cured Virginia tobacco (Nicotiana tobaccum L.). Emergent Life Sci. Res. 7, 36–39.
Noctor, G. and C. H. Foyer. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Pl. Physiol. Pl. Mol. Biol. 49: 249-279.
Pignocchi, C., Kiddle, G., Hernández, I., Foster, S. J., Asensi, A. and Taybi, T. (2006) Ascorbate oxidase-dependent changes in the redox state ofthe apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol. 141: 423–435
Regassa, R. and Chandravanshi, B.S. (2016). Levels of heavy metals in the raw and processed Ethiopian tobacco leaves. Springer Plus 5, 232.
Sairam, R. K., K.V. Rao and G.C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Pl. Sci. 163: 1037-1046.
Sekmen, A. H., I. Tu¨rkan and S. Takio. 2007. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salttolerant Plantago maritima L. and salt-sensitive Plantago media L. Physiol. Pl. 131:399-411.
Shaddad, M.A., A.F. Radi, A.M. Abdel-Rahman and M.M. Azooz (1999) Response of seeds of lupines termas and Vicia faba to the interactive effect of salinity and ascorbic acid or pyridoxine. Plant & Soil, 122 (2): 177-183.
Skopelitis DS, Paranychianakis NV, Paschalidis KA et al. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Th e Plant Cell 18: 2767- 2781, 2006.
Tang, Z., Chen, L., Chen, Z., Fu, Y., Sun, X., Wang, B. and Xia, T. (2020). Climatic factors determine the yield and quality of Honghe flue-cured tobacco. Sci. Rep., 10, 19868.
Turan MA, Elkarim AHA, Taban N et al. Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. Afr J Agric Res 4: 893-897, 2009.
Turner, J.E.; Begg, J.E. (1978). Responses of pasture plants to water deficits. In: Wilson J.R. (ed.): Plants Relations in Pastures. CSIRO, Melbourne, pp. 50-66.
Velikova, V.; I. Yordanov and A. Edreva (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science. 151: 59–66.
Verma, S.; Dubey, R.S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science 164: 645–655.
Wang, J., Zhang, Z., and Huang, R. (2013) Regulation of ascorbic acid synthesis in plants. Plant Signal. Behav. 8:e24536. doi: 10.4161/psb.24536.
Ye, N., Zhu, G., Liu, Y., Zhang, A., Li, Y., Liu, R., (2012) Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J. Exp. Bot. 63: 1809– 1822.