دراسة مخبرية لمقارنة القساوة المجهرية بين الراتنج المركب الكتلي والراتنج المركب الكتلي المقوى بالألياف
and
الملخص
الهدف من البحث: مقارنة القساوة المجهرية بين الراتنج المركب الكتلي والراتنج المركب الكتلي المقوى بألياف البولي إيتيلين.
المواد والطرائق: شملت هذه الدراسة 30 عينة اسطوانية الشكل, وزعت عشوائياً إلى مجموعتين وفق الترتيب الآتي: المجموعة الأولى (n=15): الراتنج المركب الكتلي (Tetric® N-Ceram Bulk Fill, Ivoclar Vivadent, USA), المجموعة الثانية (n=15): الراتنج المركب الكتلي المقوى بألياف البولي إيتيلين (Polydentia, Switzerland). رُممت هذه العينات بوساطة قالب من التيفلون الداكن الخاص بالبحث, يحوي في مركزه على تجويفٍ اسطوانيٍّ ذي الأبعاد: 5 مم قطراً و6 مم ارتفاعاً. صُلبت العينات باستخدام جهاز التصليب الضوئي المعتمد على ثنائيات الأقطاب LED (Light Emitting Diode), وبشدة ضوئية 1200 ميللي واط/سم2. حفظت العينات بدرجة حرارة 37ْ لمدة 24 ساعة قبل الاختبار. أنجز اختبار القساوة المجهرية وفق مقياس Vickers للعينات باستخدام جهاز القساوة المجهرية نوع (Galileo Durometra, MOD: Isoscan Od). إذ تم إنزال رأس الهرم الماسي وضغطه على العينات بقوة بلغت 50 نيوتن لمدة 15 ثانية, ومن ثم شوهد الأثر وقِيس القطر الأعظمي تحت تكبير 40×.
النتائج: كانت قيم القساوة المجهرية (HV) في مجموعة الراتنج المركب الكتلي المقوى بالألياف أعلى منها في مجموعة الراتنج المركب الكتلي.
المراجع
2. Akimasa Tsujimoto, Wayne W. Barkmeier, Toshiki Takamizawa, Mark A. Latta and Masashi Miyazaki. (2016). Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite. Dental Materials Journal, 35(3): 418-424.
3. Ala'a Al-Haddad. Characterisation and Performance of Fiber-Reinforced Composite Restorations. (2015). Faculty of Medical and Human Sciences. University of Manchester.
4. Al Sunbul, H., Silikas, N., & Watts, D. (2016). Surface and bulk properties of dental resin-composites after solvent storage. Dental Materials, 32(8): 1-11.
5. Anoop Samuel, Rinsa Raju, and V S Chaitra. (2020). Comparative Evaluation of the Surface Hardness of Different Esthetic Restorative Materials: An In Vitro Study. J Pharm Bioallied Sci, 12 (1): 124- 128.
6. Bashetty K, Joshi S. (2010). The effect of one step and multi-step polishing systems on the surface texture of two different resin composites. J Conserv Dent, 13: 34-8.
7. Bream M, Finger W, Van Doren VE, Lambrechts P, Vanherle G. (1989). Mechanical properties and filler fraction of dental composites. Dent Mater, 5: 346-8.
8. David Starr Alleman, Matthew A. Nejad, Capt. David Scott Alleman. (2017). The Protocols of Biomimetic Restorative Dentistry: 2002 to 2017. Inside Dentistry, 13(6).
9. Dejan Peric, Jovana Ruzic, Steva Levic, Jovana N. Stasic. (2022). Polymer characteristics and mechanical properties of bulk-fill, giomer, fiber-reinforced, and low-shrinkage composites. Srp Arh Celok Lek, 150 (7-8): 414-420.
10. Demarco FF, Correa MB, Cenci MS, Morea RR, Opdam NJ. (2012). Longevity of posterior composite restorations: not only a matter of materials. Dent Mater, 28: 87-101.
11. Dr. Ramciya KV, Dr. Mehanas KK and Dr. Roshni Bhaskaran. (2020). Comparative Evaluation of Marginal Adaptability of Fiber Reinforced Composites and Nanohybrid Composite Resins Using Bulk Fill and Layering Techniques: In-Vitro SEM Analysis. International Journal of Recent Scientific, 11(4): 38122-38129.
12. Ellyza Herda, Lulu Sharfina, Anggia Nadya Andjani, Mia Damiyanti, Bambang Irawan. (2017). Light-Curing Distance and Resin Thickness Effects on The Short Fiber-Reinforced Resin Composites' Depth of Cure. Int J App Pharm, 9(2): 27.
13. El-Safty S, Akhtar R, Silikas N, Watts DC. (2012). Nanomechanical properties of dental resin-compsites. Dent Mater, 28: 1292-1300.
14. Erik Asmussen. (1984). Softening of BISGMA-based polymers by ethanol and by organic acid of plaque. Scand J Dent Res, 92: 257-61.
15. Fan H, Gan X, Liu Y, Xhu Z, Yu H. (2014). The nanomechanical and tribological properties of restorative dental composites after exposure in different types of media. J Nanomaterials, 2014: 759038.
16. Finan L, Palin WM, Moskwa N, McGinley EL, Fleming GJ. (2013). The influence of irradiation potential on the degree of conversion and mechanical properties of two bulk-fill flowable RBC base materials. Dent Mater, 29: 906-912.
17. Fisher J, Varenne B, Narvaez D, Veckers C. (2018).The Minamata Convention and the phase down of dental amalgam. Bull World Health Organ, 96 (6): 436-8.
18. Garcia-Godoy F, Garcia-Godoy A. (2003). Effect of APF minute-foam on the surface roughness, hardness, and micromorphology of high-viscosity glass ionomers. J Dent child (chic), 70(1): 19-23.
19. Garoushi S, Sailynoja E, Vallittu PK, Lassila L. (2013). Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater, 29: 835-841.
20. Garoushi S, Vallittu PK, Lssila LV. (2007). Short glass fiber reinforced restorative composite resin with semi-inter penetrating polymer network matrix. Dent Mater, 23: 1356-1362.
21. Gul Keskin, Zubeyde Ucar Gundogar, Gun Burak Tek. (2021). Fracture Resistance of teeth Restored with Bulk-Fill and Fiber-Reinforced Composites in Class II Cavities. International Journal of Dental Sciences, 23(2): 115-125.
22. Hazem Abouelleil, Nelly Pradelle, Cyril Villat, Nina Attik, Pierre Colon, Brigitte Grosgogeat. (2015). Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composite. Restorative Dentistry & Endodontics, 40 (4): 262-269.
23. Heintze SD, Zimmerli B. (2011). Relevance of in vitro tests of adhesive and composite dental materials, a review in 3 parts. Part 1: approval requirements and standardized testing of composite materials according to ISO specifications. Schweiz Monatsschr Zahnmed, 121: 804-816.
24. Ilie N, Bucuta S, Draenert M. (2013). Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent, 38: 618:625.
25. Jefferson David Melo de Matos, Leonardo Jiro Nomura Nakano, Guilherme da Rocha Scalzer Lopes, Marco Antonio Bottino, John Eversong Lucena de Vasconcelos, Ricardo Huver de Jesus & Lucas Campagnaro Maciel. (2021). Characterization of Bulk-Fill Resin Composites in terms of Physical, Chemical, Mechanical and Optical Properties and Clinical Behavior. Int. J. Odontostomat, 15 (1): 226-233.
26. Karakas, S., Turgut, H., & Kuden, C. (2021). Comparison of Surface Roughness and Microhardness of Reinforced Glass Ionomer Cements and Microhybrid Composite. J Dent Indones, 28(3): 131-138.
27. Karimzadeh A, Ayatollahi MR, Shirazi HA. (2014). Mechanical properties of a dental nano-composite in moist media determined by nano-scale measurement. Int J Mater Mesh Manufact, 2: 67-72.
28. Kawano F, Ohguri T, Ichikawa T, Matsumoto, N. (2001). Influence of thermal cycles in water on flexural strength of laboratory processed composite resin. J Oral Rehabil, 28: 703-744.
29. Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. (2014). Physico-mechanical characteristicts of commercially available bulk-fill composites. J Dent, 42: 993-1000.
30. Mohamad D, Young RJ, Mann AB, Watts DC. (2007). Post-polymerization of dental resin composite evaluated with nanoindentation and micro-Raman spectroscopy. Archives Orofacial Sci, 2: 26-31.
31. MS Cenci, D Venturini, T Pereira-Cenci, E Piva, FF Demarco. (2008). The Effect of Polishing Techniques and Time on the Surface Characteristics and Sealing Ability of Resin Composite Restorations After One-year Storage. Operative Dentistry, 33-2: 169-176.
32. Nathaniel CL and John OB. (2015). Wear of nanofilled dental composites at varying filler concentrations J. Biomed Mater Res B Appl Biomater, 103: 424-9.
33. Nicoleta Ilie, Garry J.P. Fleming. (2015). In vitro comparison of polymerization kinetics and the micro-mechanical properties of low and high viscosity giomers and RBC materials. JDENT, 2458: 1-9.
34. Nina Attik, Hazem Abouelleil. (2022). Comparison of physical and biological properties of a flowable fiber reinforced and bulk filling composites. Dental Materials, 38(2): 19-30.
35. Ozcan Karatas. (2021). Effect of fiber reinforcement on color stability and degree of polymerization of different composite resins. JORR, 13 (1): 25-30.
36. Pereira SMB, Castilho AA, Marocho SMS, Oliveira KMC, Vaquez VZC and Bottino MA. (2007). Thermocycling effect on microhardness of laboratory composite resins. Braz J Oral Sci, 6: 1372-75.
37. Perham Pedram, Shiva Jafarnia, Sima Shahabi, Sogol Saberi, Hamidreza Hajizamani. (2022). Comparative evaluation of fiber-reinforced, bulk-fill and conventional dental composites: Physical characteristics and polymerization properties. Polim Med, 52 (1): 11-16.
38. Raju Raju, Ginu Rajan, Paul Farran & B. Gangadhara Prusty. (2021). Dimensional stability of short fibre reinforced flowable dental composites. Nature portfolio, 11: 4697.
39. Shiva Jafarnia, Alireza Valanezhad, Sima Shahabi, Shigeaki Abe, and Ikuya Watanabe. (2021). Physical and mechanical characteristics of short fiber-reinforced resin composite in comparison with bulk-fill composites. Journal of Oral Science, 20: 1-4.
40. Spajic J, Par M, Milat O, Demoli N, Bjelovucic R, Prskalo K. (2019). Effects of curing modes on the microhardness of resin-modified glass ionomer cements. Acta Stomatologica Croatica, 53(1): 37.
41. Tsujimoto A, Barmeier WW, Takamizawa T, Latta MA, Miyazaki M. (2017). Depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Dent Mater J, 36(2): 205-213.
42. Weam Douidar, Abdallah F. Elsadany, Asmaa M. Abdallah. (2022). Effect of Thermal Aging on Hardness and Modulus of Elasticity of Different Dental Resin Composites: An in Vitro Study. E.D.J., 68(1): 1004-1012.