Effect of Incisal Porcelain Thickness on the Fracture Resistance of Zirconia Core-Reinforced Ceramic Crowns (In-Vitro Study)
تأثير ثخانة الخزف المغطي القاطعي في مقاومة الكسر للتيجان الخزفية المقواة بنواة الزركونيا (دراسة مخبرية) (العربية)

الكلمات المفتاحية

zirconia
veneer thickness
chipping
fracture resistance

How to Cite

AL-Zitawi, K., & Alsalameh, E. (2022). Effect of Incisal Porcelain Thickness on the Fracture Resistance of Zirconia Core-Reinforced Ceramic Crowns (In-Vitro Study). Journal of Hama University , 5(12). Retrieved from https://hama-univ.edu.sy/ojs/index.php/huj/article/view/702

الملخص

Purpose of the study: The purpose of this study was to evaluate fracture strength of veneered zirconium dioxide crowns designed with different incisal porcelain thicknesses.

Materials and Methods: With a standardized technique, thirty bi-layered Zirconia crowns divided into three groups of 10 were used in this study. Groups were divided according to different thicknesses of incisal porcelain veneer on zirconium dioxide cores of equal thickness (0.5mm). Porcelain thicknesses were 1.5, 1.0 and 0.5mm. Crowns were loaded to fracture. Data were statistically analyzed.

Results: Means of failure loads were 1368.90N for 0.5mm group, 1432.11N for 1.0 mm group and 957.11N for 1.5mm group. There was no significant difference (p>0.05) in fracture loads between groups 1.0 and 0.5mm, whereas the 1.5mm group showed significantly lower fracture loads in comparison with the other two groups

Conclusions: changes in the thickness of the incisal porcelain layer have a significant influence on fracture strength of veneered zirconium dioxide crowns.

تأثير ثخانة الخزف المغطي القاطعي في مقاومة الكسر للتيجان الخزفية المقواة بنواة الزركونيا (دراسة مخبرية) (العربية)

References

1. Al-Wahadni, A., H. Al-Saleh, F. Al-Quran and M. M. Hatamleh (2012). "Fracture resistance of fixed partial dentures supported by different abutment combinations: an ex vivo study." General dentistry 60(5): e295-301.
2. Anusavice, K. J., C. Shen and H. R. Rawls (2012). Phillips' science of dental materials, Elsevier Health Sciences.
3. Badran, N., S. Abdel Kader and F. Alabbassy (2019). "Effect of incisal porcelain veneering thickness on the fracture resistance of CAD/CAM zirconia all-ceramic anterior crowns." International journal of dentistry 2019.
4. Benetti, P., F. Pelogia, L. F. Valandro, M. A. Bottino and A. Della Bona (2011). "The effect of porcelain thickness and surface liner application on the fracture behavior of a ceramic system." Dental materials 27(9): 948-953.
5. Dibner, A. C. and J. R. Kelly (2016). "Fatigue strength of bilayered ceramics under cyclic loading as a function of core veneer thickness ratios." The Journal of prosthetic dentistry 115(3): 335-340.
6. Figueiredo, V. M. G. d., S. M. B. Pereira, E. Bressiani, M. C. Valera, M. A. Bottino, Y. Zhang and R. M. d. Melo (2017). "Effects of porcelain thickness on the flexural strength and crack propagation in a bilayered zirconia system." Journal of Applied Oral Science 25: 566-574.
7. Guazzato, M., T. Walton, W. Franklin, G. Davis, C. Bohl and I. Klineberg (2010). "Influence of thickness and cooling rate on development of spontaneous cracks in porcelain/zirconia structures." Australian dental journal 55(3): 306-310.
8. Helvey, G. A. (2013). "Classification of dental ceramics." Inside Continuing Education 13: 62-68.
9. Júlia-Magalhães-da Costa Lima, J., P.-M. Tribst, L.-C. Anami, R.-M. de Melo, R.-O. Dayanne-Monielle-Duarte Moura, A. Souza and M.-A. Bottino (2020). "Long-term fracture load of all-ceramic crowns: Effects of veneering ceramic thickness, application techniques, and cooling protocol." Journal of Clinical and Experimental Dentistry 12(11): e1078.
10. Kumchai, H., P. Juntavee, A. F. Sun and D. Nathanson (2021). "Effects of Veneering Ceramic and Methods on Failure Load of Veneered Zirconia." Applied Sciences 11(5): 2129.
11. Larsson, C., S. E. Madhoun, A. Wennerberg and P. Vult von Steyern (2012). "Fracture strength of yttria‐stabilized tetragonal zirconia polycrystals crowns with different design: an in vitro study." Clinical oral implants research 23(7): 820-826.
12. Lima, J. M., A. C. O. Souza, L. C. Anami, M. A. Bottino, R. M. Melo and R. O. Souza (2013). "Effects of thickness, processing technique, and cooling rate protocol on the flexural strength of a bilayer ceramic system." Dental Materials 29(10): 1063-1072.
13. Mahrouse, A. I., E. M. Anwar and H. Sallam (2014). "EFFECT OF VENEERING THICKNESS AND TECHNIQUE ON COLOR AND STRENGTH OF SHADED ZIRCONIA CORE VENEERED CERAMIC." DENTAL JOURNAL 60(937): 951.
14. Michalakis, K. X., A. Stratos, H. Hirayama, K. Kang, F. Touloumi and Y. Oishi (2009). "Fracture resistance of metal ceramic restorations with two different margin designs after exposure to masticatory simulation." The Journal of prosthetic dentistry 102(3): 172-178.
15. Potiket, N., G. Chiche and I. M. Finger (2004). "In vitro fracture strength of teeth restored with different all-ceramic crown systems." The Journal of prosthetic dentistry 92(5): 491-495.
16. Rodrigues, C. S., S. Dhital, J. Kim, L. G. May, M. S. Wolff and Y. Zhang (2021). "Residual stresses explaining clinical fractures of bilayer zirconia and lithium disilicate crowns: A VFEM study." Dental Materials 37(11): 1655-1666.
17. Sailer, I., A. Feher, F. Filser, H. Lüthy, L. J. Gauckler, P. Schärer and C. H. F. Hämmerle (2006). "Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up." Quintessence International 37(9).
18. Saker, S. and M. Özcan (2021). "Marginal discrepancy and load to fracture of monolithic zirconia laminate veneers: The effect of preparation design and sintering protocol." Dental Materials Journal 40(2): 331-338.
19. Scherrer, S. and W. De Rijk (1993). "The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli." International Journal of Prosthodontics 6(5).
20. Swain, M. (2009). "Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures." Acta biomaterialia 5(5): 1668-1677.
21. Tanaka, C. B., R. Y. Ballester, G. M. De Souza, Y. Zhang and J. B. Meira (2019). "Influence of residual thermal stresses on the edge chipping resistance of PFM and veneered zirconia structures: Experimental and FEA study." Dental Materials 35(2): 344-355.
22. Tinschert, J., K. A. Schulze, G. Natt, P. Latzke, N. Heussen and H. Spiekermann (2008). "Clinical behavior of zirconia-based fixed partial dentures made of DC-Zirkon: 3-year results." International Journal of Prosthodontics 21(3).