أثر إضافة الفحم الحيوي وماء الجفت في نمو وإنتاجية نبات فول الصويا ((Glycine max.L تحت ظروف الساحل السوري
الملخص
نفذت هذه الدراسة في محافظة اللاذقية (مبقرة فديو) /عام 2022 م/ لدراسة تأثير أربع مستويات من الفحم الحيوي (0-100-300-600 كغ. دونم-1) وثلاث مستويات من ماء الجفت (0-5-10 ل م-2) على بعض مؤشرات نمو إنتاجية نبات فول الصويا sb44 ومحتوى بذوره من العناصر الغذائية الكبرى المزروع في تربة لومية. أظهرت النتائج أن إضافة ماء الجفت لوحده أثرت على مؤشرات النمو والإنتاجية لنبات فول الصويا بشكل أكبر مقارنة بالإضافة المنفردة للفحم الحيوي. أدت الإضافة المشتركة لماء الجفت عند 10 ل.م-2 مع الفحم الحيوي 600 كغ دونم-1 لتحقيق أعلى طول نبات سم، دليل مساحة المسطح الورقي وإنتاجية كغ دونم-1 بمقدار زيادة52.26، 45.43و122.14% على التوالي مقارنة بالشاهد. تحسن محتوى بذور فول الصويا من العناصر الغذائية الكبرى غ100غ-1 مع الزيادة التدريجية بمستويات الفحم الحيوي وماء الجفت لتبلغ أقصاها عند المستوى 600 كغ دونم-1 من الفحم الحيوي وماء الجفت بمستوى 10 ل م-2 حيث بلغت نسبة الزيادة في كل من الفوسفور البوتاسيوم والأزوت مقدار 63.14%,47.32%و25.05 على التوالي مقارنة بالشاهد.
المراجع
كبيبو، عيسى؛ بوعيسى، عبد العزيز؛ بد ا رف، أمجد، تأثير إضافة مستويات مختلفة من مياه عصر الزيتون مع التسميد على بعض الخواص الكيميائية لتربة مزروعة بالحمضيات وعلى إنتاجية. (2011). مجلة جامعة تشرين-سلسلة العلوم البيولوجية
رقية ن., محمد ي., & قاجو أ. (2019). تأثير الكثافة النباتية ومواعيد الزراعة في إنتاجية بعض أصناف فول الصويا تحت ظروف منطقة الساحل السوري. مجلة جامعة تشرين للبحوث والدراسات العلمية- سلسلة العلوم البيولوجية, 30(2). استرجع في من https://journal.tishreen.edu.sy/index.php/bioscnc/article/view/5917
ديوب إ., جهاد إبراهيم, سمر حسن, & أولا قاجو. (2024). The effect of amendment with different rates of biochar on physical and hydrodynamical soil characteristics and in soybean (Glycine max.L) productivity . Tishreen University Journal -Biological Sciences Series, 46(1), 55–68. Retrieved from http://www.journal.tishreen.edu.sy/index.php/bioscnc/article/view/16477
ديوب إ., جهاد إبراهيم, سمر حسن, & أولا قاجو. (2025). أثر ماء الجفت في بعض الخصائص الفيزيائية والهيدروديناميكية للتربة وفي نمو وإنتاجية نبات فول الصويا. المجلة السورية للبحوث الزراعية المجلد (12) العدد (5) تشرين الأول. قُبلت للنشر.
REFRENCES
Affholder F., Poeydebat, C., Corbeels, M., Scopel, E., & Tittonell, P. (2013). The yield gap of major food crops in family agriculture in the tropics: Assessment and analysis through field surveys and modeling. Field Crop Res, 143, 106–118.
Aranda, V., Caleroa, J., Plaza, I., & Ontiveros-Ortega, A. (2016). Long-term effects of olive mill pomace co-compost on wettability and soil quality in olive groves Geoderma (Vol. 267, pp. 185–195).
Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricul-tural benefits from biochar application to temperate soils: A review. Plant Soil, 33, 1–18.
BACCARI, M. M. A. J. O. N. E., PETRANGELI, M., PAPINI, M., CAPASSO, R. E. V. I. D. E. N. T. E., SCHIVO, A., ORRU, L., & G.MARCIAL, M. A. C. R. I. S. T. I. N. Z. O. (2003). TORRISI,Enhancement of anaerobic treatability of olive oil mill effluents by addition of Ca(OH)2 and bentonite intermediate solid/ liquid separation. Rroceeding of the 1st World Congress of the without ”International Water Association”. J. Apple. Bacterial,79, 3-7 13-.
Barbera, A., Maucieri, C., Cavallaro, V., Ioppolo, A., & Spagna, G. (2013). Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag, 119, 43–53.
Basson, A. R., Ahmed, S., Almutairi, R., Seo, B., & Cominelli, F. (2021). Regulation of Intestinal Inflammation by Soybean and Soy-Derived Compounds. Foods, 10, 774.
Brunetti, G., Senesi, N., & Plaza, C. (2007). Effects of amendment with treated and untreated olive oil mill wastewaters on soil properties, soil humic substances and wheat yield. Geoderma, 138(1–2), 144–152.
Brynda, J., Skoblia, S., Pohořelý, M., Beňo, Z., Soukup, K., Jeremiáš, M., & Svoboda, K. (2020). Wood chips gasification in a fixed-bed multi-stage gasifier for decentralized high-efficiency CHP and biochar production: Long-term commercial operation. Fuel, 281, 118637.
Chehab, H., Tekaya, M., Ouhibi, M., Gouiaa, M., Zakhama, H., Mahjoub, Z., Laamari, S., Sfina, H., B.Chihaoui, D. B., & B. (2019). MechriEffects of compost, olive mill wastewater, and legume cover cropsonsoil characteristics, tree performance, and oil quality of olive trees cv Chemlali grown under organic farming system Scientia Horticultura (Vol. 253, pp. 163–171).
Collivignarelli, M., Abbà, A., Frattarola, A., Carnevale Miino, M., Padovani, S., Katsoyiannis, I., & Torretta, V. (2019). Legislation for the reuse of biosolids on agricultural land in Europe: Overview. Sustainability, 11(21), 6015. https://doi.org/10.3390/su11216015
Gross, A. & B. (2021). Glaser Meta-analysis on how manure application changes soil organic carbon storage Sci. Rep, 11, 1–13, 10 1038 41598-021-82739–7.
Hasanuzzaman, M., Nahar, K., Rahman, A., Mahmud, J. A., Hossain, M. S., & Fujita, M. (2016). Soybean production and environmental stresses. – Environmental Stresses in Soybean Production, 2, 61–102.
Jien, S.-H., & Wang, C.-S. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233.
K.N., D., Singh, T. B., Athokpam, H. S., N.B., S., & D, S. (2013). Influence of inorganic, biological and organic manures on nodulation and yield of soybean (‘Glycine max Merril’ L.) and soil properties (online. AJCS, 7(9), 1407–1415.
Kostova, A. A., Novaselova, U. K., & Gareast, A. P. (1984). Increasing the production of plant protein. Moscow, P192.
Krishnan, H. B. (2005). Engineering Soybean for Enhanced Sulfur Amino Acid Content. Crop Sci, 45, 454–461.
Liu, D., Feng, Z., Zhu, H., Yu, L., Yang, K., Yu, S., & Guo, W. (2020). Effects of corn straw biochar application on soybean growth and alkaline soil properties. BioResources, 15(1), 1463–1481.
Liu, J.-J., Yao, Q., Li, Y.-S., Zhang, W., Mi, G., Chen, X.-L., Yu, Z.-H., & Wang, G.-H. (2019). Continuous cropping of soybean alters the bulk and rhizospheric soil fungal communities in a Mollisol of Northeast PR China. Land Degrad. Dev, 30, 1725–1738.
Mekki, A., Dhouib, A., & Sayadi, S. R. (2013). Effects of olive mill wastewater application on soil properties and plants growth. Int. J. Recycl. Org. Waste Agric, 2, 15–21.
Miao, S.-J., Qiao, Y.-F., & Han, X.-Z. (2007). Review of researches on obstacles of continuous cropping of soybean. Chin. J. Eco-Agric, 3, 203–206.
Mimmo, T., Panzacchi, P., Baratieri, M., Davies, C. A., Tonon, G., A., Z., K., S., S., R., & G. (2014). Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) bioCross. In Biochar in European Soils and Agriculture: Science and Practice (pp. 73–98). Routledge.
Mohawesh, O., Albalasmeh, A., Al-Hamaiedeh, H., Qaraleh, S., Maaitah, O., Bawalize, A., & Almajali, D. (2020). Controlled land application of olive mill wastewater (OMW): Enhance soil indices and barley growth performance in arid environments. Water, Air, & Soil Pollution, 231(5), 214. https://doi.org/10.1007/s11270-020-04612-z
Mohawesh, O., Al-Hamaiedeh, H., Albalasmeh, A., Qaraleh, S., & Haddadin, M. (2019). Effect of olive mill wastewater (OMW) application on soil properties and wheat growth performance under rain-fed conditions. Water, Air, and Soil Pollution, 230(7). https://doi.org/10.1007/s11270-019-4208-8
Pearson, D. (1981). The chemical analysis of food. Chemical publishing company. INC.
Premalatha, R. P., Poorna Bindu, J., Nivetha, E., Malarvizhi, P., Manorama, K., E, P., & Davamani, V. (2023). A review on biochar’s effect on soil properties and crop growth. Front. Energy Res, 11(1092637). https://doi.org/10.3389/fenrg.2023.1092637
ROKAIA, N., M.AABDULAZIZ, I., ABDULHAMID, S. S. A. L. A. M. E. H., Y.MOHAMMED, T. A. L. I. D. I. B., & F.S.A.A.D. (2005). Field crop production.
Saadi, I., Laor, Y., Raviv, M., & Medina, S. (2007). Land spreading of olive mill wastewater: Effects on soil microbial activity and potential phytotoxicity. Chemosphere, 66, 75–83.
Sadowska, U., Domagala-Swiatkiewicz, I., & Zabinski, A. (2020). Biochar and its effects on plant-soil Macronutrient cycling during a three-year field trial on sandy soil with peppermint (Mentha piperita L.). Part I: Yield and macro element content in soil and plant biomass. Agronomy, 10.
Severoğlu, S., Yıldırım, E., Ekinci, M., Güllap, M. K., Karabacak, T., Aktaş, H., & Çerit, N. (2023). The Effect of Biochar Applications at Different Doses on Soybean Seedlings Grown in Salty Conditions. Turkish Journal of Range and Forage Science, 4(1), 38–42.
SODAH, M. G., Jayeoba, O. J., Amana, S. M., & Jibrin, I. M. (2022). FUDMA JOURNAL OF SCIENCES, 6(4), 12–16.
Suppadit, T., Phumkokrak, N., & Poungsuk, P. (2012). The effect of using quail litter biochar on soybean (Glycine max [L.] Merr.) production. Chil. J. Agric. Res, 72, 244–251. https://doi.org/10.4067/S0718-58392012000200013
Tagoe, S., Horiuchi, T., & Matsui, T. (2008). Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant Soil, 306, 211–220. https://doi.org/10.1007/s11104-008-9573-9
Teguh, W., Zulfikar, M., Tufaila, A. M., Sarman, M., & Zamrun, F. (2017). Agricultural wastes based-organic fertilizers (Bokashi) improve the growth and yield of soybean. http://iaras.org/iaras/journals/ijas
Tendon, H. L. S. (2005). Analysis of Soils, Plants, Waters and Fertilizers.
The effect of amendment with different rates of biochar on physical and hydrodynamical soil characteristics and in soybean (Glycine max.L) productivity. (2024). Tishreen University Journal -Biological Sciences Series, 46(1), 55–68.
Vella, F., Galli, E., Calandrelli, R., Cautela, D., & B. (2016). Laratta Effect of olive mill wastewater spreading on soil properties Bull. Environ. Contam. Toxicol, 97, 138–144.
Wang, L.-G., Shen, A.-L., Sun, K.-G., & Wu, J.-C. (2001). Reserch advances on obstacles and Modulations of soybean continuous cropping. Soil Fertil, 5, 3–8.
Zerihun, A., & Haile, D. (2017). The effect of organic and inorganic fertilizers on the yield of two contrasting soybean varieties and residual nutrient effects on a subsequent finger millet crop. Agronomy, 7, 1–15.
Z.H., W., S.X., L., & S, M. (2008). Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric, 88, 7–2.
Zhang, Y., Ding, J., Wang, H., Su, L., & Zhao, C. (2020). Biochar addition alleviate the negative effects of drought and salinity stress on soybean productivity and water use efficiency. BMC Plant Biology, 20, 1–11.
ZHU, Q., KONG, L., SHAN, Y., YAO, X., ZHANG, H., XIE, F., & AO, X. (2019). Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. Journal of Integrative Agriculture, 18(10), 2242–2254.
رقية ن., & ق. أ., محمد ي. (2019). تأثير. البيولوجية, 30(2). https://journal.tishreen.edu.sy/index.php/bioscnc/article/view/5917
Kumar A., Kumar V., Lal S.K., Jolly M., Sachdev A. 2014. Influence of gamma rays and ethyl methane sulphonate (EMS) on the levels of phytic acid, raffinose family oligosaccharides and antioxidants in soybean seeds of different genotypes. J Plant Biochem Biotechnol., 24: 204-209
Han, Y.; Chen, X.-W.; Wang, E.-H.; Xia, X.-Y. Optimum biochar preparations enhance phosphorus availability in amended Mollisols of Northeast China. Chil. J. Agric. Res. 2019, 79, 153–164.
Pathan, M.S.; Sleper, D.A. Advances in Soybean Breeding. In Genetics and Genomics of Soybean; Stacey, G., Ed.; Springer: New York, NY, USA, 2008; pp. 113–133
Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the World 2. Soybean—Worldwide production, use, and constraints caused by pathogens and pests. Food Secur. 2011, 3, 5–17.
Pettersson, D.; Pontoppidan, K. Soybean Meal and The Potential for Upgrading Its Feeding Value by Enzyme Supplementation. In Soybean; Hany, A.E.-S., Ed.; IntechOpen: Rijeka, Italy, 2013; Chapter 13.
Seo, J.-H.; Kim, K.-S.; Ko, J.-M.; Choi, M.-S.; Kang, B.-K.; Kwon, S.-W.; Jun, T.-H. Quantitative trait locus analysis for soybean (Glycine max) seed protein and oil concentrations using selected breeding populations. Plant Breed. 2019, 138, 95–104.