طريقة مقترحة لحل مسألة البرمجة الكسرية الخطية مجالية القيمة
الكلمات المفتاحية:
البرمجة الكسرية الخطية, البرمجة الكسرية الخطية مجالية القيمة, طريقة السيمبلكس
الملخص
.والتي تأخذ في الاعتبارالتغيير وعدم الاستقرار في البيانات التي تصل متخذ القرار ،(IVLFP) تقدم هذه الورقة البحثية طريقة مقترحة لحل نموذج مسألة البرمجة الكسرية الخطية مجالية القيمة
مسألة البرمجة الكسرية الخطية مجالية القيمة التي قمنا بدراستها تحتوي معاملات مجالية القيمة في تابع الهدف والطرف الأيمن من القيود، تبين أن الطريقة المقترحة مجدية وقادرة على حل مسألة البرمجة الكسرية الخطية مجالية القيمة بفاعلية.
المراجع
1. Martos, B. (1960) Hyperbolic Programming, Publications of the Research Institute for Mathematical Sciences. Hungarian Academy of Sciences, 5, 386-407.
2. Stancu-Minasian, I. M. (1997). Fractional Programming: Theory, Methods and Applications. Springer Netherlands.
3. Xiao, L. (2010). Neural Network Method for Solving Linear Fractional Programming. In 2010 International Conference on Computational Intelligence and Security (CIS). IEEE. https://doi.org/10.1109/cis.2010.15
4. Charnes, A., and Cooper, W.W. (1962) Programming with Linear Fractional Functionals. Naval Research Logistics Quarterly, 9, 181-186.
http://dx.doi.org/10.1002/nav.3800090303
5.
6. Wu, H.-C. (2007). The Karush–Kuhn–Tucker optimality conditions in an optimization problem with interval-valued objective function. European Journal of Operational Research, 176(1), 46–59. https://doi.org/10.1016/j.ejor.2005.09.007
7. Wu, H.-C. (2008). On interval-valued nonlinear programming problems. Journal of Mathematical Analysis and Applications, 338(1), 299–316. https://doi.org/10.1016/j.jmaa.2007.05.023
8. Effati, S., & Pakdaman, M. (2012). Solving the Interval-Valued Linear Fractional Programming Problem. American Journal of Computational Mathematics, 02(01), 51–55. https://doi.org/10.4236/ajcm.2012.21006.
9. Dantzig, G.B. (1947) Maximization of a Linear Function of Variables Subject to Linear Inequalities. In: Koopmans, T.C., Ed., Activity Analysis of Production and Allocation, Wiley & Chapman-Hall, New York, London, 339-347.
10. Martos, B., Andrew, & Whinston, V. (1964). Hyperbolic programming. Naval Research Logistics Quarterly, 11(2), 135–155. https://doi.org/10.1002/nav.3800110204
11. Zhang, H.-y., Wang, J.-q., & Chen, X.-h. (2014). Interval Neutrosophic Sets and Their Application in Multicriteria Decision Making Problems. The Scientific World Journal, 2014, 1–15. https://doi.org/10.1155/2014/645953
12. Bajalinov, E. B. (2003). Linear-Fractional Programming Theory, Methods, Applications and Software. Springer US. https://doi.org/10.1007/978-1-4419-9174-4
2. Stancu-Minasian, I. M. (1997). Fractional Programming: Theory, Methods and Applications. Springer Netherlands.
3. Xiao, L. (2010). Neural Network Method for Solving Linear Fractional Programming. In 2010 International Conference on Computational Intelligence and Security (CIS). IEEE. https://doi.org/10.1109/cis.2010.15
4. Charnes, A., and Cooper, W.W. (1962) Programming with Linear Fractional Functionals. Naval Research Logistics Quarterly, 9, 181-186.
http://dx.doi.org/10.1002/nav.3800090303
5.
6. Wu, H.-C. (2007). The Karush–Kuhn–Tucker optimality conditions in an optimization problem with interval-valued objective function. European Journal of Operational Research, 176(1), 46–59. https://doi.org/10.1016/j.ejor.2005.09.007
7. Wu, H.-C. (2008). On interval-valued nonlinear programming problems. Journal of Mathematical Analysis and Applications, 338(1), 299–316. https://doi.org/10.1016/j.jmaa.2007.05.023
8. Effati, S., & Pakdaman, M. (2012). Solving the Interval-Valued Linear Fractional Programming Problem. American Journal of Computational Mathematics, 02(01), 51–55. https://doi.org/10.4236/ajcm.2012.21006.
9. Dantzig, G.B. (1947) Maximization of a Linear Function of Variables Subject to Linear Inequalities. In: Koopmans, T.C., Ed., Activity Analysis of Production and Allocation, Wiley & Chapman-Hall, New York, London, 339-347.
10. Martos, B., Andrew, & Whinston, V. (1964). Hyperbolic programming. Naval Research Logistics Quarterly, 11(2), 135–155. https://doi.org/10.1002/nav.3800110204
11. Zhang, H.-y., Wang, J.-q., & Chen, X.-h. (2014). Interval Neutrosophic Sets and Their Application in Multicriteria Decision Making Problems. The Scientific World Journal, 2014, 1–15. https://doi.org/10.1155/2014/645953
12. Bajalinov, E. B. (2003). Linear-Fractional Programming Theory, Methods, Applications and Software. Springer US. https://doi.org/10.1007/978-1-4419-9174-4
منشور
2024-11-03
كيفية الاقتباس
الخدامع., & النجارح. (2024). طريقة مقترحة لحل مسألة البرمجة الكسرية الخطية مجالية القيمة. مجلة جامعة حماة, 7(العاشر). استرجع في من https://hama-univ.edu.sy/ojs/index.php/huj/article/view/1927
القسم
قسم العلوم