تأثير المعاملة بحمض الهيوميك (HA) في نمو نباتات الريحان الحلو المجهدة بالملوحة
الملخص
نفذ البحث خلال عام 2024 في قرية برج القصب – اللاذقية – سوريا، من خلال زراعة شتلات الريحان الحلو في أكياس بلاستيكية تم توزيعها وفق التصميم العشوائية الكاملة (R.C.D) وبثلاث مكررات. هدف هذا البحث إلى دراسة تأثير رش حمض الهيوميك على أوراق نباتات الريحان الحلو بالتراكيز (1، 3 و5 غ/لتر) قبل الري بالمحاليل الملحية المحضرة من ملح كلوريد الصوديوم ((Nacl بالتراكيز (6، 12 و18) ديسي مول/سم بأسبوعين. تم قياس مجموعة من المؤشرات المورفولوجية (ارتفاع النبات (سم)، عدد الأفرع (فرع/نبات)، المؤشرات الفسيولوجية (مساحة مسطح الورقي الكلي (سم2)، معدل التمثيل الضوئي (ملغ/سم2/يوم))، المؤشرات البيوكيميائية (محتوى الكلوروفيل) (ميكروغرام/غ وزن رطب)) ومحتوى البرولين في الأوراق (ميكرومول/غ وزن طازج)). أدت المعاملة بالإجهاد الملحي إلى تأثيرات سلبية تزداد حدتها مع زيادة تركيز الملوحة على جميع الخصائص المورفولوجية، الفسيولوجية والبيوكيميائية المدروسة وبالتالي التأثير على نمو وتطور نبات الريحان الحلو.
أدت المعاملة بحمض الهيوميك وخاصة بتركيزين (1 و 3 غ/ل) إلى زيادة ارتفاع النبات، عدد الأفرع، مساحة مسطح الورقي الكلي، معدل التمثيل الضوئي ومحتوى الكلوروفيل في الأوراق مقارنة بالشاهد وباقي التراكيز، كما أدى إلى تحسن محتوى البرولين في الأوراق مقارنة بالشاهد ومعاملات الملوحة والتركيز المرتفع من حمض الهيوميك، وبالتالي التأثير بشكل ايجابي على نمو نبات الريحان، وهذا ينطبق على معظم المعايير والصفات المدروسة. أدت المعاملة الأولية بحمض الهيوميك وخاصة بتركيز (1غ/ل) إلى تحسين المؤشرات المدروسة تحت ظروف الملوحة وخاصة عند تركيز الملوحة المنخفض (6 ديسي مول/سم) مقارنة بالشاهد وباقي المعاملات، وبالتالي زيادة تحمل نبات الريحان الحلو للإجهاد الملحي. وبالتالي يمكن اقتراح استخدام معاملات الرش على الأوراق بحمض الهيوميك بتركيز (1 و 3 غ/ل) لغرض تحسين نمو نبات الريحان الحلو وزيادة تحمله للإجهاد الملحي.
المراجع
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1.
Asgharipour, M.R. and M. Rafiei, 2011. The Effect Of different Concentrations Of humic Acidonseed Germination Behavior and Vigor of barley. Australian Journal of Basic and Applied Sciences, 5(12): 610613.
Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q. and Metzger, J.D. (2002). The influence of humic acids derived from arthworm-processed organic wastes on plant growth. Bioresource Technology, 84(1):7-14.
Aydin, A., C. Kant and M. Turan. 2012. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr. J. Agric. Res., 7: 1073-1086.
Aydin, A.; Kant, C. and Turan, M. (2012). Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African J. of Agric. Research, 7(7):1073-1086.
Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.
Calderín-García, A., F. Guridi-Izquierdo, O.L. HernándezGonzález, M.M. Díaz de Armas, R. Huelva-López, S. MesaRebato, D. Martínez-Balmori and R.L. Louro-Berbara. 2013. Biotechnology of humified materials obtained from vermicomposts for sustainable agroecological purposes. Afr. J. Biotech., 12(7): 625-634.
Calderín-García, A., R.L. Louro-Berbara, L. Portuondo, F. Guridi-Izquierdo, O. Hernández, R. Hernández R. Castro. 2012. Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. Afr. J. Biotech., 11: 3125-3134.
Cavalcante, H.L.; Da Silva, R.S.; Albano, F.G.; De Lima F.N. and Marques A.De Sʼ. (2011). Foliar spray of humic substances on seedling production of Papaya (Pawpaw). J. of Agron., 10 (4):118-122.
Chaves M.M., Flexas J. and Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot., 103: 551–560.
Chen, Y. and Aviad, T. (1990). Effects of humic substances on plant growth, p. 161–186. In: MacCarthy, P., C.E. Clapp, R.L. Malcolm, and P.R. Bloom (eds.). Humic substances in soil and crop sciences: Selected readings. Amer. Soc. Agronomy, Madison, WI.
De Kock, C. (1955). Influence of humic acids on plant growth. Science, 121:473-474.
Delavari, M., Enteshari, S. and Manoochehri, K. K. (2014). Effects of Response of Ocimum basilicum to the interactive effect of salicylic acid and salinity stress.
Desoky, E.M., A.M. Merwad and Seham A. Ibrahim (2019). Humus materials and moringa (Moringa oleifera Lam.) leaf extract modulate the harmful effect of soil salinity stress in Sudan grass (Sorghum vulgare L.). Egypt. J. Agron., 41 (1): 29 –45.
El-Hefny, E.M. (2010). Effect of saline irrigation water and humic acid application on growth and productivity of two cultivars of cowpea (Vigna unguiculata L. Walp). Australian J. of Basic and Appl. Sci., 4(12):6154-6168.
Elhindi, K.M., S.M. Al-Amri, E.M. Abdel-Salam and N.A. Al-Suhaibani. 2017. Effectiveness of salicylic acid in mitigating salt-induced adverse effects on different physio-biochemical attributes in sweet basil (Ocimum basilicum L.) Journal of Plant Nutrition 40:908-919.
Eyheraguibel, B., J. Silvestre and P. Morard (2008). Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Biores. Technol., 99: 4206-4212.
Farsaraei, S., M. Moghaddam and A.G. Pirbalouti. 2020. Changes in growth and essential oil composition of sweet basil in response of salinity stress and superabsorbents application. Scientia Horticulturae 271:1-12.
Ferdous, J., J.C. Sanchez-Ferrero, P. Langridge, L. Milne, J. Chowdhury, C. Brien and P.J. Tricker. 2017. Differential expression of MicroRNAs and potential targets under drought stress in barley. Plant Cell and Environment 40:11-24.
Gulser, F.; Sonmez, F. and Boysan, S. (2010). Effects of calcium nitrate and humic acid on pepper seedling growth under saline condition. J. of Environ. Biol., 31(5):873-876.
Hosseini Farahi M, Norouzi nejad M. 2016. Effect of vermicompost and Phosphate Barvar2 biofertilizers on some quantitative characteristics and elements absorption in green basil (Ocimum basilicm L.) in Gachsaran region. Journal of Plant Ecophysiology 8(24), 160-172.
Ibrahim, A.M.M., A.E. Awad, A.S.H. Gendy and M.A.I. Abdelkader (2019). Effect of proline foliar spray on growth and productivity of sweet basil (Ocimum basilicum, L.) plant under salinity stress conditions. Zagazig J. Agric. Res., 46 (6A): 1877-1889.
Irakoze, W, H. Prodjinoto, S. Nijimbere, G. Rufyikiri and S. Lutts. 2020. NaCl and Na2SO4 salinities have different impact on photosynthesis and yield-related parameters in rice (Oryza sativa L.). Agronomy 10:1-12.
Jadczak, D., K. Bojko, M. Kaymakanova and M. Berova. 2022. Salinity-induced changes in the antioxidant status of common basil plants (Ocimum basilicum L.) grown under controlled conditions. Horticulturae 8:1-11.
Jamali ZS, Astaraei A, Emami H. 2015. Effects of humic acid, compost and phosphorus on growth characteristics of basil herb and concentration of micro elements in plant and soil. J. Sci. Technol. Of Greenhouse Culture, 6(22).
Kalteh, M., Z.T. Alipour, S. Ashraf, M. Aliabadi and F.A. Nosratabadi. 2018. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks 4:49-55.
Kamel, H.M. (1989). Physiological study on chamomile plant. M.Sc. Thesis, Fac. Agric., Zagazig Univer., Egypt, 132 p.
Karakurt, Y.; Unlu, H.; Unlu, H. and Padem, H. (2009). The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric. Scand., 59:233-237.
Khaled H, Fawy HA. 2011. Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil Water Res., 6(1): 21-29.
Lamz, P.A. and C.M.C. González. 2013. Salinity as a problem in agriculture: plant breeding an immediate solution. Cultivos Tropicales 34:31-42.
Maas, E.V. and Nieman, R.H. (1978). Physiology of plant tolerance salinity. In crop tolerance to suboptimal land conditions. (Jung, G.A., ed), ASA Spece. Publ., 32:277-299.
Reyes-Pérez, J.J., F. Guridi-Izquierdo, I.M.R. Escobar, Y. Ruisánchez, J.A. Larrinaga-Mayoral, B. Murillo-Amador, F.H. Ruiz-Espinoza, T. Fabré, C. Amador, C.M. Ojeda-Silvera, Y. Morales and J.Y.R. Milanés. 2011. Effects of liquid humus on some parameters of internal quality of tomato fruits grown under salt stress conditions. Cent. Agríc., 38: 57-61.
Safaei, Z., M. Azizi, G. Davarynejad and H. Aroiee (2014). The effect of foliar application of humic acid and nanofertilizer (pharmks®) on yield and yield components of black cumin (Nigella sativa L.). J. Med. Plants and By-Prod., 2: 133-140.
Safdar, H., A. Amin, Y. Shafiq, A. Ali, R. Yasin, A. Shoukat, M.U. Hussan, I. Sarwar M.I. 2019. A review: Impact of salinity on plant growth. Nature Science17:34-40.
Safwat, G. and H. Abdel Salam. 2022. The effect of exogenous proline and glycine betaine on phytobiochemical responses of salt-stressed basil plants. Egyptian Journal of Botany 62:537-547.
Said-Al Ahl H.A.H. and Hussein M.S. (2010). Effect of water stress and potassium humate on the productivity of oregano plant using saline and fresh water irrigation. Ozean J. of Appl. Sci., 3(1):125-141.
Said-Al Ahl, H.A.H., A.G. El Gendy and E.A. Omer (2016). Humic acid and indole acetic acid affect yield and essential oil of dill grown under two different locations in Egypt. J. Pharm. Sci. And Res., 8 (7): 594606.
Sallam, H.S. (2010). Some Physiological Studies on Bean Plant (Phaseolus vulgaris). Ph.D. Thesis. Fac. Of Agric., Cairo Unv., Egypt, 315 p.
Sani, M.N.H. and J.W.H. Yong. 2022. Harnessing synergistic bio stimulatory processes: A plausible approach for enhanced crop growth and resilience in organic farming. Biology 11:1-27.
Sayarer, M., Aytaç, Z., & Kürkçüoğlu, M. (2023). The Effect of Irrigation and Humic Acid on the Plant Yield and Quality of Sweet Basil (Ocimum basilicum L.) with Mulching Application under Semi-Arid Ecological Conditions. Plants, 12(7), 1522.
Shahrajabian, M. H., & Sun, W. (2024). The importance of salicylic acid, humic acid and fulvic acid on crop production. Letters in Drug Design & Discovery, 21(9), 1465-1480.
Silva, T. I. D., Lopes, A. S., Dias, M. G., Gonçalves, A. C. M., Melo Filho, J. S. D., & Dias, T. J. (2023). Salicylic acid relieves salt stress damage on basil growth. Revista Ceres, 70, 51-63.
Sladky, Z. (1959). The effect of extracted humus substances on growth of tomato plants. Biologia Plant., 1:142-150.
Stefanov, M.A., G.D. Rashkov and E.L. Apostolova. 2022. Assessment of the photosynthetic apparatus functions by chlorophyll fluorescence and P700 absorbance in C3 and C4 plants under physiological conditions and under salt stress. International Journal of Molecular Sciences 23:120.
Taarit, B.M., M. Kamel, H. Karim, H. Mohamed, K. M. Elyes and M. Brahim (2009). Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Industrial Crops and Prod., 30 (3): 333-337.
Talaat, I.M. and Balbaa, L.K. (2010). Physiological response of sweet basil plants (Ocimum basilicum L.) to putrescine and trans-cinnamic acid. American-Eurasian J. Agric. And Environ. Sci., 8(4):438-445.
Taleisnik-Gertel, E.; M. Tal.; and M.C. Shannon (1983). The responses to NaCl of excited fully differentiating tissues of cultivated tomato and its wild relatives. Physiologia Plantarum 59: 659–663.
Tattini, M.; Chiarini, A.; Tafani, R. and Castagneto, M. (1990). Effect of humic acids on growth and nitrogen uptake of container-grown olive (Olea europaea L. 'Maurino'). Acta Hort., 286:125-128.
Trivellini, A.; B. Gordillo; F.J. Rodríguez-Pulido; E. Borghesi; A. Ferrante; P. Vernieri; N. Quijada-Morín; M.L. González-Miret; and F.J. Heredia (2014). Effect of salt stress in the regulation of anthocyanins and color of Hibiscus flowers by digital image analysis. Journal of Agricultural and Food Chemistry 62: 6966–6974.
Vivekanandan, A.S.; Gunasena, H.P.M.; Sivanayagam, T. (1972). Statistical evaluation of the accuracy of three techniques used in the estimation of leaf area of crop plants. Indian Journal of Agricultural Science 42: 850–857.
Williams, R.F. (1946). The physiology of plant growth with special reference to the concept of net assimilation rate. Annals of Botany 37: 41–71.
Yildirim, E. (2007). Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agric. Scand. Sect. BSoil Plant Sci., 57:182-186.
Yilmaz, A., Yildirim, E., Yilmaz, H., Soydemir, H. E., Güler, E., Ciftci, V., & Yaman, M. (2023). Use of arbuscular mycorrhizal fungi for boosting antioxidant enzyme metabolism and mitigating saline stress in Sweet Basil (Ocimum basilicum L.). Sustainability, 15(7), 5982.
Zahra, N., M.S. Al Hinai, M.B. Hafeez, A. Rehman, A. Wahid, K.H.M. Siddique and M. Farooq. 2022. Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry 178:55-69.
Zakharin, A. A. (2001). Rapid Water Inflow and Outflow in Plants with Roots Treated with Salt Solutions of Various Concentrations. Russian Journal of Plant Physiology, 48, 252-257.
Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., and Wang, P. (2021). Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22 (9), 4609. doi: 10.3390/ijms22094609.