

جامعة حماة المعهد التقاني للخدمات الطبية الطارئة السنة الأولى المتصاص الطوارئ الختصاص الطوارئ الفصل الثاني ٢٠٢١-٢٠٢

علم وظائف الأعضاء مدرس المهرر: د. موسى الممود

الدكتور موسى الحمود

فيزيولوجيا التغذية

الطاقة

- الحاجة الطاقية: هي كمية الطاقة اللازمة لتغطية الاستقلاب الأساسي و العمل الذي نقوم به
 - تختلف حسب العمر و الحالة الصحية و المجهود المبذول
- الاستقلاب الأساسي هو معدل الاستقلاب الأدنى في حالة الراحة المطلقة، و الطاقة اللازمة ١٣٠٠-١٦٠ كيلوكالوري
 - نحصل على الطاقة من الغذيات و الفائض يخزن → البدانة
 - النسبة المثالية: ٥٥% سكريات، ٣٠% دسم، ١٥% بروتينات
 - منسب كتلة الجسم (BMI) \approx الوزن(كغ) / مربع الطول(م)
 - القيمة السوية: ٥.٨١ ٩.٤٢

الطاقة

- يتعلق معدل الاستقلاب الأساسي:
 - كتلة الجسم غير الشحمية
 - النمو: يرتفع عند الأطفال
- الحالة الفيزيولوجية: يرتفع أثناء اليقظة، الحمل و الإرضاع، الانفعالات، انخفاض الحرارة الخارجية
- الحالة الصحية: يرتفع أثناء الأمراض بشكل عام و لاسيما فرط نشاط الدرق

السكريات

- هي المصدر الأولي و الأسهل للطاقة و الوحيد للدماغ
- نوعان: بسيطة، كالغلوكوز و الفركتوز، سهلة الهضم و سريعة الامتصاص، و مركبة كالنشاء (في البطاطا و الرز) و الغليكوجين (في اللحم)، امتصاصها بطيء
- البسيطة تلبي الحاجة الآنية و تستهلك بسرعة → الجوع
 - المركبة تلبي الحاجة المديدة و تطفئ الجوع
- يجب أن يكون المدخول من السكريات: ٢٥% بسيطة و ٥٧% مركبة

البروتينات

- تتركب من الحموض الأمينية (٢٠ حمضا منها ٨ أساسية، لا تصنع أو تصنع بكمية غير كافية)
 - تمثل البروتينات ١٧% من وزن الجسم
 - تدخل في بنى الخلايا و عضياتها، و تساهم في النمو
 - تدخل في تركيب الهرمونات و الإنظيمات و الأضداد، و تساهم في الضغط الحلولي و التوازن الحمضي القلوي
 - تشكل مصدرا احتياطي للطاقة

البروتينات

- يجب أن تشكل ١٥% من الغذيات بشقيها الحيواني و النباتي لتعويض المفقود (البراز، الجلد، الاستقلاب الداخلي) و للبناء (خلايا جديدة)
- يجب أن يلائم المدخول الحاجة المتغيرة: حسب العمر و الجنس و الحالة الفيزيولوجية (الحمل و الإرضاع) و الصحية و المجهود المبذول
- توجد البروتينات في اللحم و البيض و اللبن و مشتقاته و البقول البقول

الدسم

- ۳ أنواع: ثلاثيات الغليسريد و الشحميات الفسفورية و الكوليسترول
- الطاقة الفائضة تخزن بشكل عام على شكل شحوم \rightarrow مصدر هام للطاقة عند اللزوم
- تدخل في تركيب الأغشية الخلوية و الهرمونات و هي ضرورية جدا لعمل الخلايا
 - يجب أن تشكل ٣٠% من الغذيات و أن تحوي جميع أنواعها و لا يتجاوز الكوليستيرول ٢٠٠ مغ/اليوم

الدسم

- تتركب من الحموض الدسمة:
- المشبعة: تساهم في تشكيل البروتينات منخفضة الكثافة و الحاوية على كميات كبيرة من الكوليستيرول (الضارة)
 - وحيدة و متعددة اللاإشباع: تساهم في تشكيل البروتينات عالية الكثافة و الحاوية على كميات قليلة من الكوليستيرول (الجيدة)
 - وحيدة اللاإشباع موجودة في الزيوت النباتية: زيت الزيتون و الصويا و عباد الشمس

الماء

- بشكل ٢٠% من وزن الجسم
- مذيب، وسط ناقل، يساهم في تنظيم الحرارة، و يدخل في التفاعلات الكيميائية
 - الحاجة اليومية: ٠٠٠٠-٠٠٥ مل/اليوم لتعويض الفقد الفيزيولوجي (البول، البراز، التنفس، التعرق...)
- الوارد اليومي يأتي عن طريق الشرب و الأغذية المختلفة

المعادن

- Na+, Cl- الشاردتان الأساسيتان خارج الخلايا (ملح الطعام)
 - + K الشاردة الأساسية داخل الخلايا (الفواكه و الخضار)
- +++ Ca++ في العظام و الأسنان، الشاردة الأساسية في التقلص، له دور جو هري في التخثر و النقل العصبي و في عمل كثير من الإنظيمات (البيض و الحليب...)
- Fe معظمه في الخضاب الدموي و العضلي و الإنظيمات التنفسية (اللحم و الخضار الخضراء و الكبد)
 - P معظمه في العظام و الأسنان، في ATP و ضروري في استقلاب السكريات و الشحوم
 - F: هام لسلامة الأسنان
 - Mg معظمه في العظام و العضلات، مهم جدا لعمل الجملة العصبية و التقلص العضلي
 - Zn معظمه في RBC، مهم في عمل كثير من الإنظيمات الاستقلابية
 - I أساسي في تركيب الهرمون الدرقي

الفيتامينات

- عناصر أساسية تعمل كمساعدات للإنظيمات
- الكميات اليومية اللازمة ضئيلة و لكنها مهمة جدا
- بعضها يصنع في الجسم (ك، د) و معظمها يجب تناوله مع الأغذية، معظمها موجود في الخضار و الفواكه لاسيما الطازجة و اللحوم و مشتقات الألبان
 - نوعان أساسيان:
- ذوابة في الدسم يجب تناولها مع وجبات الطعام: A,D,K,E
 - ذوابة في الماء: C,B

الفيتامينات الذوابة في الدسم

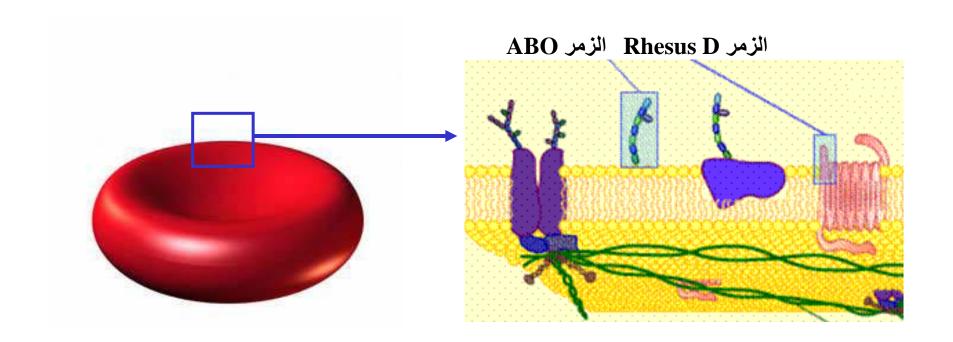
- فيتامين A: هام لنمو الأطفال و لسلامة البشرة، يدخل في تركيب الصباغ الحساس للضوء في الشبكية ($\downarrow \rightarrow$ العشى الليلي)
 - فيتامين D: هام لامتصاص الكالسيوم و الفسفور و تثبيتهما في العظام و الأسنان، يصنع في الكلية ($\downarrow \rightarrow$ تلين العظام)
 - فيتامين E: هام لسلامة النطاف و نضارة الجلد، مضاد أكسدة
 - فيتامين K: هام لتصنيع عوامل التخثر في الكبد، يمكن لجراثيم المعوية أن تصنعه، يعطى للمواليد

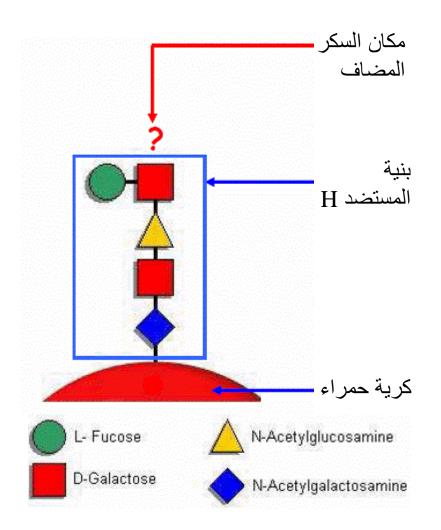
الفيتامينات الذوابة في الماء

- فيتامين ∑: هام جدا، مضاد أكسدة و يشارك في الجمل الإنظيمية الاستقلابية و التنفسية و له دور في المناعة، يتخرب بسرعة بالحرارة (لابد من تناول الخضار و الفواكه طازجة)، (↓ → الاسقربوط: نزوف لثوية و تشوهات عظمية و ضعف مناعة)
 - فيتامينات B: تعمل كمساعدات للإنظيمات الاستقلابية
 - B1,B2,B6: هامة في وظيفة الجملة العصبية
 - B12 و حمض الفوليك: ضروريان لتركيب RBC (\downarrow فقر دم كبير الخلايا)
 - PP: مضاد أكسدة $(\downarrow \rightarrow | \text{like})$ البلاغرا: أذيات عصبية، هضمية و حلاية

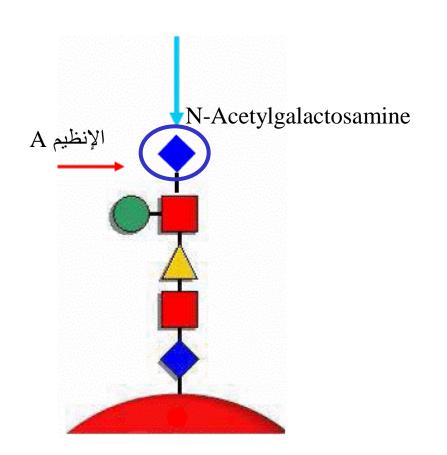
الدكتور موسى الحمود

فيزيولوجيا الدم

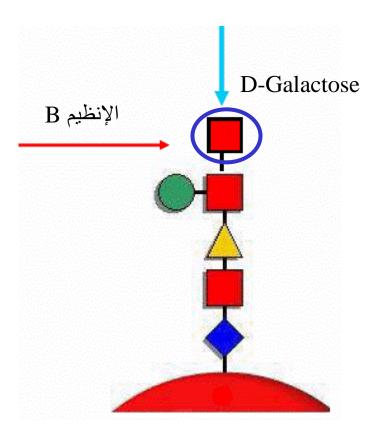



الزمر الدموية و نقل الدم

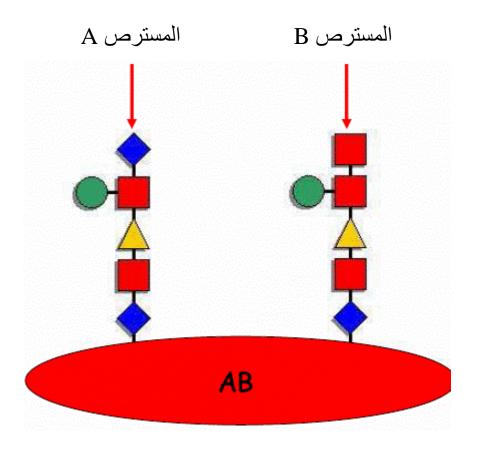
الزمر الدموية


• تصنيف يعبر عن وجود مستضدات (مسترصات Agglutinogens) على سطح الكرية الحمراء يمكن أن ترتبط بأضداد مصورية راصة Agglutinins موجودة في دم الزمر المخالفة مما يؤدي إلى رص الكريات الحمراء و تكتلها ثم انحلالها

الزمر الدموية

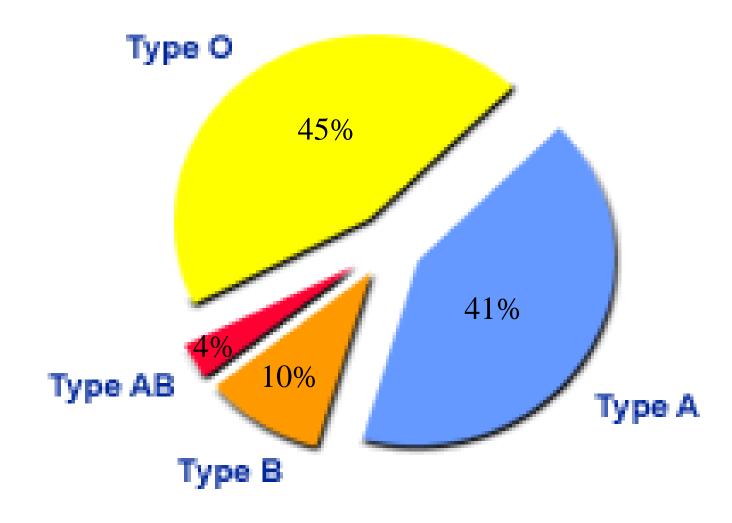


الزمرة O: الكرية الحمراء تحمل المسترص H دون تغيير



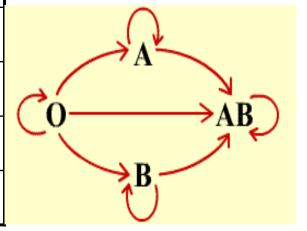
الزمرة A: الكرية الحمراء تحمل المسترص H المضاف له سكر أستيل غالاكتوز أمين

الزمرة B: الكرية الحمراء تحمل المسترص H المضاف له سكر الغالاكتوز


الزمرة ABِ إِ الكرية الحمراء تحمل المسترصين A و

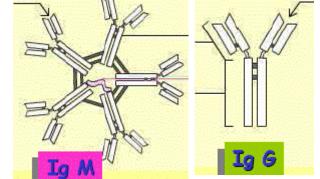
الأضداد أو الراصات: و هي بروتينات موجودة في المصورة من النمط المخالف للزمرة الدموية

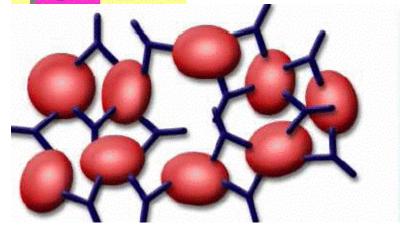
Groupe	Type A (AA, AO)	Type B (BB, BO)	Type AB (AB)	Type 0 (00)
Agglutinogènes المسترصات	A agglutinogens only	B B B B B B B B B B B B B B B B B B B	A and B agglutinogens	No agglutinogens
Agglutinines الراصات	b 6 Anti B	Anti A		Anti A + Anti B


توزع الزمر ABO بين البشر

التصالب بين الزمر ABO

- الزمرة ((معطي عام): يعطي جميع الزمر
- الزمرة AB (آخذ عام): يأخذ من جميع الزمر

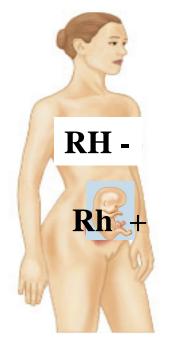

О	AB	В	A	الأخذ المعطي
+	-	+	-	A
+	-	-	+	В
+	-	+	+	AB
-	-	-	-	O



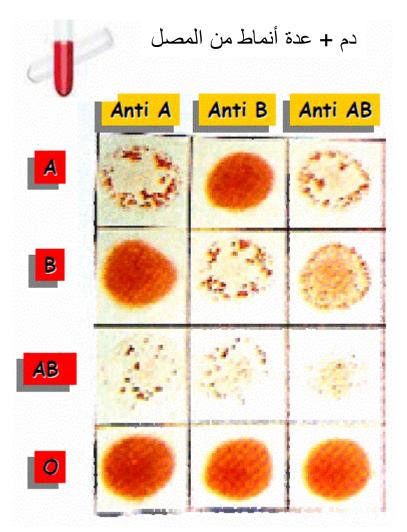
تفاعل التراص

• عند نقل دم من زمرة تحوي راصات مخالفة فإنها ترتبط بالكريات الحمر و تربط الكريات فيما بينها بسبب وجود أكثر من موقع رابط للراص

• تبتلع البلعميات الكريات المرتصة


• في نقل الدم نجري التصالب بين كريات المعطي و مصل الأخذ (وجود راصات قليلة IgM في دم المعطي لا تشكل مشكلة بسبب تمددها)

مجموعة الريسوس Rh


- عدة مستضدات بروتينية أهمها العامل D توجد فقط على سطح الكريات الحمر
- لا تحوي المصورة أضدادا لها في الحالة الطبيعة (نقل دم مغاير أو ولادة طفل+ لأم-)
 - ۵۰% من البشر لديهم المستضد D أي +Rh D
 - ۱۵% من البشرليس لديهم المستضد Rh D-D

أرام الدم الجنيني Erythroblastosis Fetalis

- لايوجد مشكلة في الحمل الأول
- اختلاط دم الجنين و الأم أثناء الولادة
- <u> الاسقاطات و بزل السائل الأمنيوسي (اختلاط)</u>
 - تشكل الأم -Rh أضداد لكريات الجنين +Rh
- في الحمول اللاحقة تعبر الأضداد عبر المشيمة من الأم إلى الجنين → ترص الكريات الحمر و تحطمها
 - التأثير على الجنين: يتراوح من اليرقان حتى الموت
- يعطى Ig anti D في الأسبوع ٢٨ من الحمل و بعد الولادة لتحطيم كريات الجنين العابرة و لا فائدة منه بعد تشكل الأضداد

اختبار Beth-Vincent

- تحديد الزمرة لشخص ما:
- على شريحة زجاجية توضع ٣ قطرات من دم الشخص المفحوص، واحدة في خلية
- تضاف قطرة من الراصات antiA,antiB,antiRh D
 - تمزج جيدا
- براقب التراص خلال ٥-٠١ د

نقل الدم

- الأفضل نقل الدم الذاتي: سحب وحدات من دم الشخص الذي سيتعرض لجراحة لاحقا على مراحل و تخزينها حتى وقت العمل الجراحي، يساعد في ذلك حقن الإريتروبيوتين (جيد و لكن غير عملي دائما)
- نقل الدم الكامل غالبا في النزوف الحادة لتعويض الحجم و الكريات الحمر في آن واحد

نقل الدم

- نقل الدم الجزئي أفضل إذا أمكن و لبى الحاجة المطلوبة لأنه يقلل من الاختلاطات
- يجب مراعاة توافق الزمر الدموية من المجموعتين ABO و Rh D في الحالات الاعتبادية مع الانتباه إلى بقية المجموعات في الحالات الحرجة و العائلية و الوراثية

أنواع نقل الدم

- في حال فقر الدم (الكريات الحمر):
- دم کامل أو کریات حمراء معزولة: Ht< ۱۳۰۰% أو Hb< ۸ خ/۱۰۰ مل
 - في حال ل الصفيحات <٠٠٠٠ إمم ٢
- صفيحات معزولة من شخص واحد أو عدة أشخاص مع الانتباه لتصالب الزمر
 - في حال ل عوامل التخثر:
 - المصورة المجمدة أو عوامل التخثر (العامل ٨)
 - في حال ل بروتينات المصورة:
 - ألبومين بشري أو صنعي

اختلاطات نقل الدم

- ارتكاس أرجي (تحسسي)
- انحلال الدم: عدم توافق الزمر
- زيادة حمولة الدوران بسبب نقل كميات كبيرة من الدم
 - $K^+ \uparrow$ ، Ph امراض تنفسية و استقلابية:
 - صدمة إنتانية
- في الحالات الشديدة: قصور كلوي حاد بسبب انسداد أنابيب الكلية المفرغة بالخضاب المتحرر

الدكتور موسى الحمود

فيزيولوجيا السوائل و الشوارد

مواضيع المحاضرة

- توازن السوائل
- الكهارل (الشوارد)
- التبادل بين أحواز الجسم
- التوازن الحمضي القلوي

تركيب السوائل:

١- الماء ٦٠ _ ٧٠% من وزن الجسم

٢- البروتينات ١٥- ١٨ % من وزن الجسم

٣- الدهون ١٢ _ ٥١ % من وزن الجسم

3 - العناصر المعدنية (الكهارل) $- \wedge \wedge \wedge$ من وزن الجسم

السائل خارج الخلايا ECF السائل داخل الخلايا

570

٠٤-٠٥% من وزن الجسم

۲۱۲

السائل الخلالي ١٥ %

7 2

الدم ٥ %

 ٤ ل الحجم الكلي لسوائل الجسم عند إنسان وزنه ٧٠ كغ

نسبة الماء في الجسم

- نسج غیر دهنیة: ۷۱ -۷۲ مل/ ۱۰۰ غ
 - نسج دهنیة < ۱۰ %
 - تختلف باختلاف:

العمر

الجنس

الحالة الصحية

استتباب التوازن المائي

- مدخول الماء اليومي عند البالغ ١٠٠٠-٢١٠ مل (الشرب، الوجبات) + ١٥٠- ٢٥٠ مل من الاستقلاب
 - الإطراح اليومي = المدخول اليومي
 - ٠٠٤ امل مع بول
 - ، ٣٥ مل تبخر مع الزفير
 - ٠٥٤ مل عبر الجلد (انتشار + تعرق)
 - ١٠٠ مل مع الغائط

الإطراح اليومي للماء (مل)

سبيل الفقدان	حالة الراحة	الطقس الحار	الأعمال المجهدة
التعرق	100	1400	5000
الجهاز التنفسي	350	300	650
الجهاز البولي	1400	1200	500
الانتشار عبر الجلد	350	350	350
الجهاز الهضمي	100	100	100
المجموع	2300	3 350	6600

استتباب التوازن المائي

- المدخول اليومي = الإطراح اليومي
- تنظيم التوازن: منعكس العطش، التقليل من فقد الماء عبر الكلية و الجلد و التنفس، آلية معقدة وعدة هرمونات
- الفقد الكبير دون تعويض ← التجفاف (الماء و الكهارل)
 - الفقد السريع على حساب الحيز الخلالي (Na+)
 - الفقد المستمر يطال الحيز داخل الخلايا (+K) خطير

الكهارل (الشوارد)

الحيز داخل الخلايا

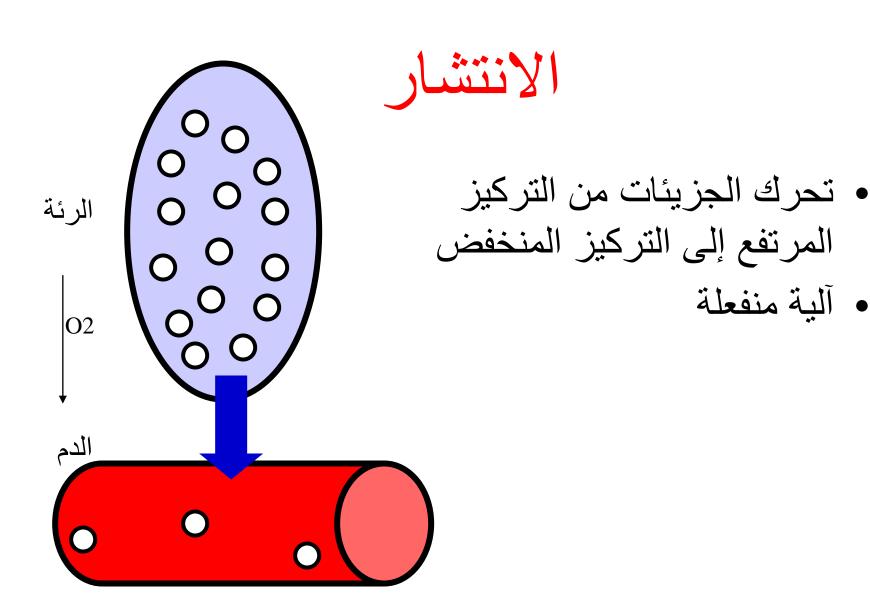
K+•

 $Mg^{+2} \bullet$

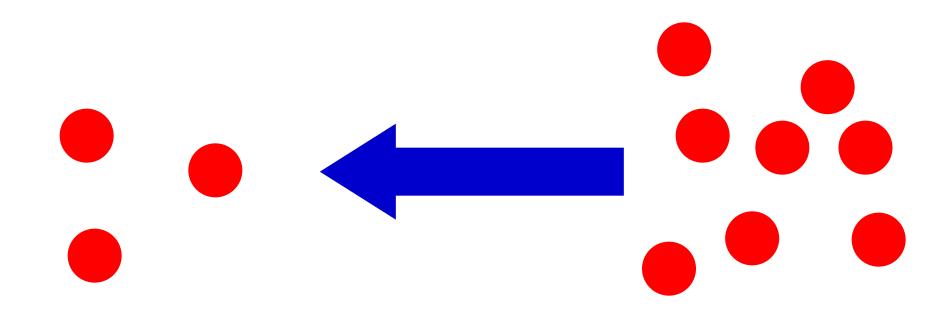
 HPO_4^{-3} •

الحيز الخلالي

 Na^+

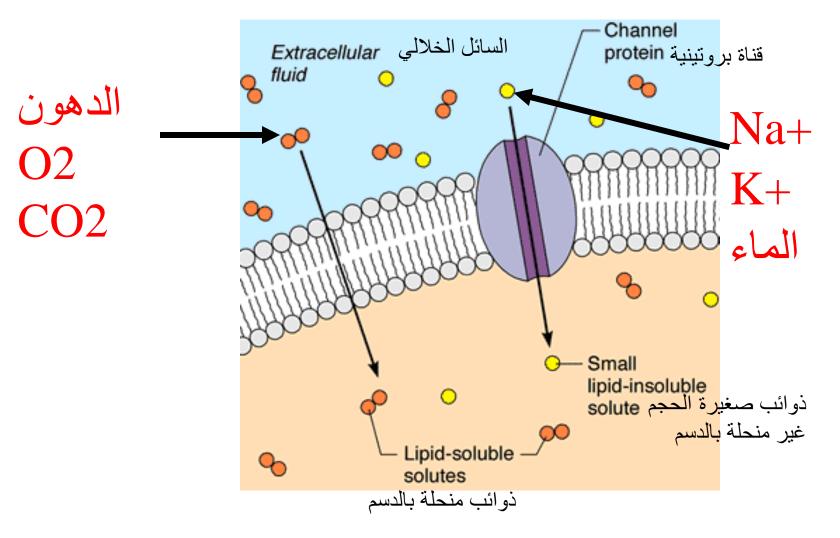

C1- •

 HCO_{3}


Ca⁺² •

المواد المنشطة تناضعيا و الموجودة في سوائل الجسم مقيسة بوحدة الميلي أوسمول \كغ ماء

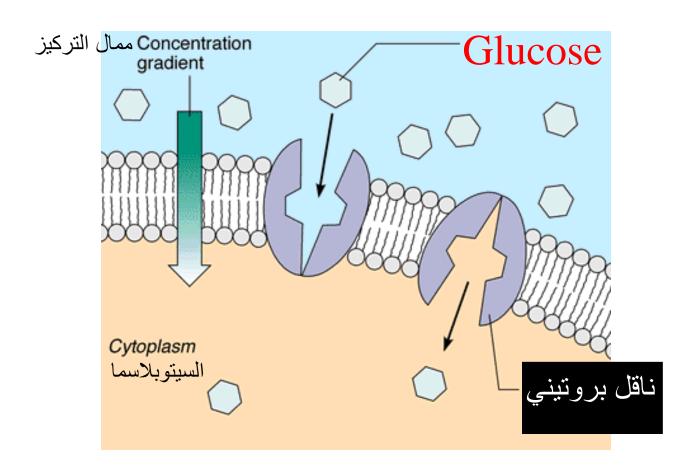
التركيز			المادة
السائل داخل الخلايا	السائل الخلالي	المصورة	PERUECEU PRU
1 8	127	157	Na ⁺
12.	٤	٤,٢	K ⁺
4,40	۲,٤	۲,0	Ca ⁺⁺
٣١	1,5	1,0	Mg ⁺⁺
ź –	1.4	1.0	Cl ⁻
1. BER	77,7	77	HCO ₃
11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Y	۲	HPO ₄ -, H ₂ PO ₄ -
	.,0	٠,٥	SO ₄
	0,7	0,7	الغلوكوز
£	٠,٢	1,7	البروتينات
£	1	٤	البولة
۸۳,۲	٣,٤	٣,٤	المواد العضوية الأخرى
٣٠٢,٢	۳۰۱,۸	4.4.9	المجموع


Diffusion

تركيز منخفض

تركيز مرتفع

الانتشار



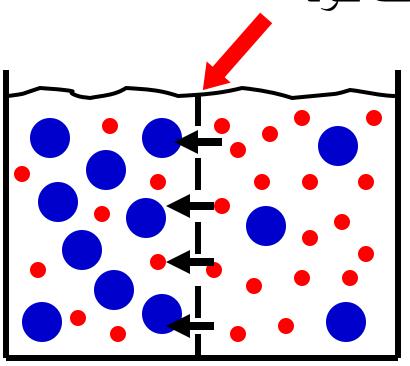
الانتشار الميسر Facilitated Diffusion

• تحرك الجزيئات عبر الغشاء بمساعدة ناقل بروتيني

• آلية منفعلة

الانتشار الميسر

الحلول Osmosis


• تحرك الماء عبر غشاء نصف نفوذ من المنطقة قليلة

الذوائب إلى المنطقة كثيرة الذوائب

• آلية منفعلة

الحلول Osmosis

غشاء نصف نفوذ

منطقة قليلة منطقة كثيرة الذوائب غير النفوذة

مسألة ١

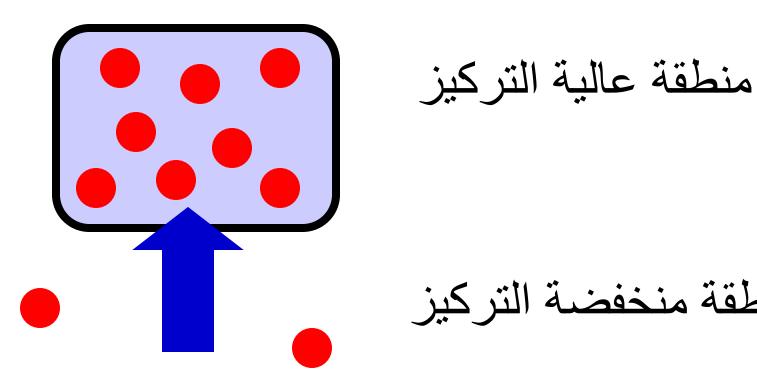
عامل بدأ حديثا العمل في جو حار غير معتاد عليه، بعد عدة أيام أصيب بصداع، هبوط ضغط و از دياد معدل ضربات القلب، مستوى الصوديوم في الدم انخفض لديه إلى ١٢٥ ملي ملي مكافئ/ل علما أن المستوى السوي هو ١٤٤ ملي مكافئ/ل. كيف نفسر ذلك؟

جواب المسألة ١

فقد هذا العامل الصوديوم بالتعرق فانخفض مستواه في الدم مما سمح للماء بالهروب إلى داخل الخلايا بالحلول مما أدى على انخفاض حجم الدم و هبوط الضغط الشرياني فأصيب العامل بالصداع. و في محاولة لرفع الضغط الشرياني و إعادة الاستتباب قام الجسم بزيادة ضربات القلب

مسألة ٢

نصح الطبيب مريضه المصاب بارتفاع الضغط الشرياني بالإقلال من الملح في الطعام، لكن المريض أهمل النصيحة و تناول كمية كبيرة من الملح فارتفع ضغطه، ما هو تبرير ذلك؟


جواب المسألة ٢

إن كمية الملح المفرطة التي تناولها المريض جعلت الدم عنده مفرط التوتر مما جذب الماء إلى داخل الدم بظاهرة الحلول فارتفع الضغط الشرياني

النقل الفعال

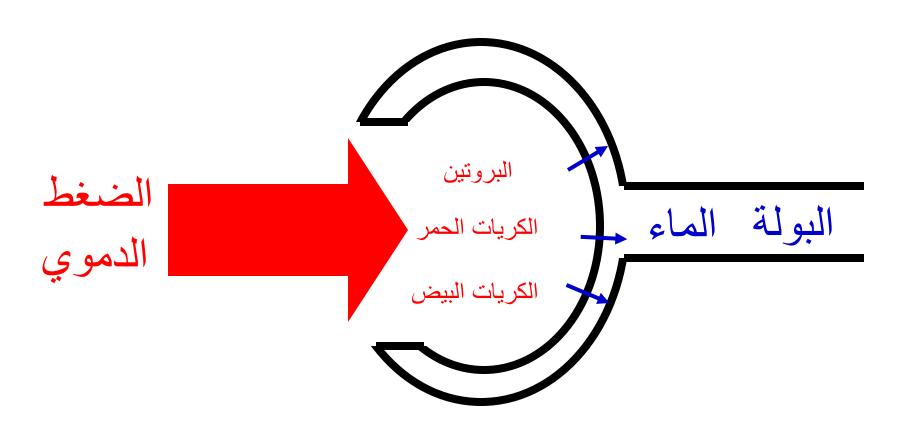
- تحرك الجزيئات من التركيز المنخفض إلى التركيز المرتفع
 - نقل فعال
 - يحتاج إلى طاقة
 - بحتاج إلى ناقل بروتيني

النقل الفعال

منطقة منخفضة التركيز

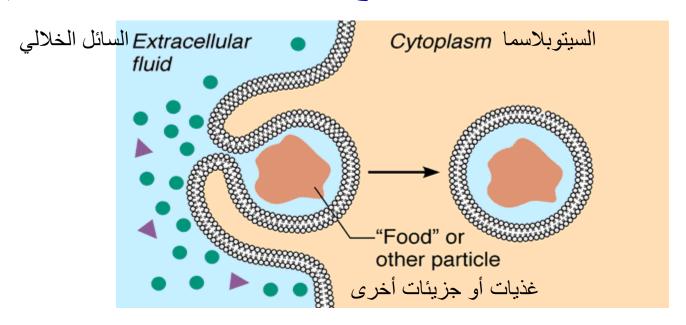
الترشيح Filtration

• هو فصل الجزيئات الكبيرة عن الصغيرة

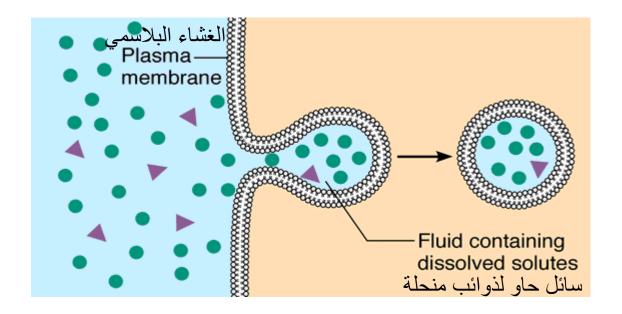

• يدفع ضغط الماء السكوني الماء و الجزيئات الصغيرة

القادرة على اجتياز الثقوب نحو الطرف الأخر

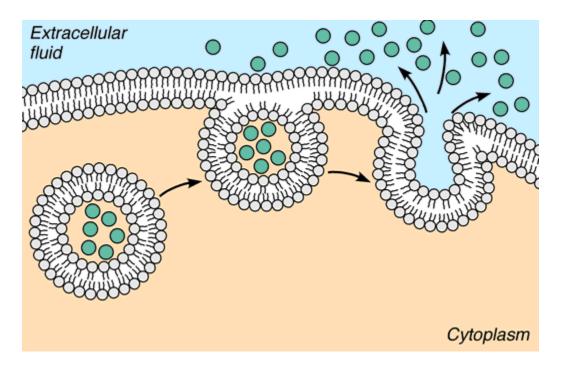
الترشيح

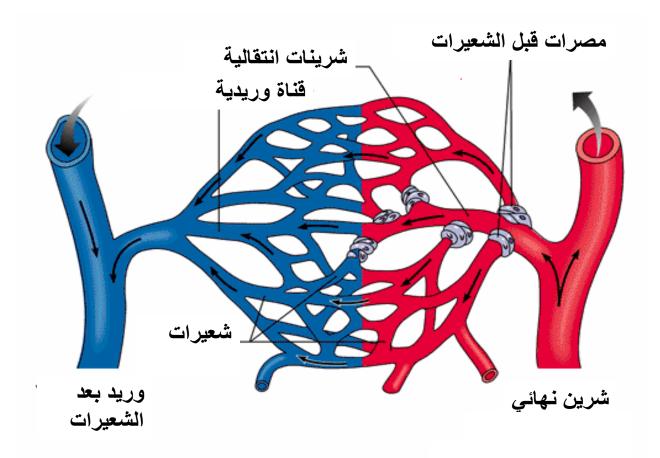


الترشيح في عرى الكلية


Phagocytosis البلعمة

ابتلاع الجزيئات من قبل الخلية مثال: ابتلاع الكريات البيضاء للجراثيم


Pinocytosis الأحتساء


ابتلاع السائل من قبل الخلية مثال: خلايا الأنبوب الهضمي تمتص السائل المغذي

الالتفاظ Exocytosis

إفراز المواد خارج الخلية مثال: إفراز اللعاب من الغدد اللعابية

- العوامل المؤثرة:
- ۱- الضغط التناضحي داخل الأوعية: و ينتج عن البروتينات غير النفوذة و هو يجذب السوائل إلى الدم = ٢٨ مم ز
- ٢- ضغط الماء السكوني: الضغط الذي تحدثه السوائل على جدران الأوعية، و هو يدفع السوائل خارج الدم= ٣٥ مم ز على الجانب الوريدي الشعيرات و ١٥ مم ز على الجانب الوريدي
- ٣- الضغط التناضحي للسائل الخلالي: يجذب السوائل من الدم = ٤مم ز على الجانب الوريدي على الجانب الوريدي
 - ٤- ضغط الماء السكوني للنسج الخلالية: يدفع السوائل إلى الدم= ١ مم ز

• على الجانب الشرياني:

قوى الدفع خارج الأوعية = الضغط السكوني للأوعية+الضغط التناضحي الخلالي قوى الدفع خارج الأوعية = 80 + 1 = 10 مم ز

قوى الجذب إلى الأوعية = الضغط السكوني الخلالي+الضغط التناضحي للأوعية قوى الجذب إلى الأوعية = ١+ ٢٨ = ٢٩ مم ز

الفارق بين قوى الجذب و الدفع= ٣٩- ٢٩ = ١٠ مم ز لصالح خروج السائل خارج الأوعية

انتشار الغذيات و 02 من الدم إلى السائل الخلالي

• على الجانب الوريدي:

قوى الدفع خارج الأوعية = الضغط السكوني للأوعية + الضغط التناضحي الخلالي قوى الدفع خارج الأوعية = 0 + 1 = 1 مم ز

قوى الجذب إلى الأوعية = الضغط السكوني الخلالي+الضغط التناضحي للأوعية قوى الجذب إلى الأوعية = ١+ ٢٨ = ٢٩ مم ز

الفارق بين قوى الجذب و الدفع= ٢٩- ٢١ = ٨ مم ز لصالح عودة السائل داخل الأوعية

انتشار فضلات الاستقلاب وCO2 من السائل الخلالي إلى الدم

تنظيم السوائل في الجسم

- الحفاظ على فرق تركيز الصوديوم داخل و خارج الخلايا
 (مضخة الصوديوم)
 - دور جملة الرينين أنجيوتنسين ألدستيرون في زيادة امتصاص + Na+
 - دور الهرمون الزارم (مضاد الإبالة)

التوازن الحمضي القلوي

- الحفاظ على Ph طبيعي أمر أساسي لاستمرار الحياة الحماض Ph> ٧.٣٥>Ph يثبط الجهاز العصبي (سبات) القلاء ٢٠٤٥>٩٠ يثير الجهاز العصبي (اختلاج)
- تختلف قيمة Ph حسب سائل الجسم، فهي ٢٤١ في الدم الشرياني و ٣٤٠ في السائل الخلالي و ٥٠٦- ٨ في البول
- المحافظة على استتباب Ph هي مهمة الجمل الدارئة أهمها: ١ حمض ضعيف (H2CO3) مع الملح الخاص به أو ٢ أساس ضعيف (NaHCO3) مع الملح الخاص به

التوازن الحمضي القلوي

- الحمض القوي الذي يعطي عند تشرده الكثير من شوارد +Hcl) H+
 - الحمض الضعيف الذي يعطي عند تشرده القليل من شوارد +H (H2CO3)

تحول الجمل الدارئة الحمض القوي إلى حمض ضعيف

$$HC1 + NaOH \longrightarrow H_2CO_3$$
+ NaCl ملح حمض ضعیف أساس حمض قوي

$$CO_2 + H_2O \leftarrow H_2CO_3$$

• إذا انخفض Ph إلى ٧.٣ مثلا (حماض) فيتسارع التنفس لطرح CO2 الزائد الناتج من تفكك H2CO3

• إذا ارتفع Ph إلى ٧.٤٥ مثلا (قلاء) فيتباطئ التنفس للحفاظ على CO2

و تحويله إلى H2CO3

- الحماض التنفسي:
- كل سبب يثبط التنفس مما يرفع مستوى CO2 في الدم فينخفض ال Ph
 - القلاء التنفسي:

فرط تهوية فينخفض مستوى CO2 في الدم فيرتفع ال Ph

• الحماض الاستقلابي:

ازدياد مستوى الحمض في الدم لسبب غير تنفسي داء السكري، الداء الكلوي، نقص البيكربونات (الإسهال)

• القلاء الاستقلابي:

نقص مستوى الحمض في الدم لسبب غير تنفسي فقد الحمض بسبب هضمي (القياء)، از دياد البيكر بونات (التناول المفرط لمضادات الحموضة)