Macromineral Mutrition And Related metabolic Diseases of Cattle

By Prof. Ryad Al-Munajed

Faculty. Of Vet. Med.

Hama-Syrien

مقدمة عامة لأهمية العناصر المعدنية

- *العناصر المعدنية والعمليات الحيوية الطبيعية
- * عددها كبير في الأنسجة الحيوانية والأعلاف.
- *تصنيفها ... نظام مساعد لفهم تأثيراتها الغذائية .
- *جميع العناصر مهمة في علف الحيوان وخلطات الدواجن وبخاصة كلا من وي إلى معلم وبخاصة كلا من وي المعلم والتوتياء والكوبالت و بالغة ومن العناصر الصغرى النحاس والتوتياء والكوبالت و منغنبز بوم و والكوبالت و منغنبز بوم و المعلم و المعل
 - خاصية نشاط التحرك لأجل التوازن والتعادل عند الأبقار (حمى الحليب *سوء الامتصاص للنحاس والتوتياء بسبب تلوث بعنصر الحديد .

Macromineral

- Calcium (Ca^{+2})
- Phosphorus (P-2)
- -Magnesium (Mg^{+2})
- -Potassium (K^+)

```
-Sodium (Na +)
```

-Chlorine (Cl⁺)

 $-Sulfur (S^{-2})$

تدعى بالعناصر الكبرى لنسبتها المرتفعة في العلف وتعطى (غ/كغ)

تركيز العناصر المعدنية الأعلى في جسم الحيوان

مغ/كغ	العناصر	غ/كغ	العناصر	
	الصغرى		الكبرى	
۸٠-۲٠	الحديد	10	كالسيوم	
01.	التوتياء	•	فوسفور	
0_1	النحاس	1.7	صوديوم	
07	مانغنيز	۲	بوتاسيوم	
۰،٦-۰،٣	اليود	161	كلور	
• • 1 - • • • ٢	كوبالت	• 6 £	ماغنزيوم	
٤-١	موليبيديوم	1,0	كبريت	
۱،۷	سلينيوم			

العناصر المعدنية

بيرى العناصر الصغرى

- تقدر باستخدام جهاز الامتصاص .
- أقل من ١٠٠ مغ /كغ وزن حي أو جزء بالمليون (P.P.M)
 - تضم:
 - Fe.Cu,Zn,Co,Mn,I&Se
- بنسبة ٢،٠% . قليلة . فاعلية عالية
- وتوجد منها عناصر سامة : الفلور والرصاص الموليبدين إذا ارتفعت نسبتها في العلائق من البيئة المحيطة.
 - التوتياء تواجده انتقائي في بعض الأنسجة.

العناصر الكبرى

- تقدر بتر ميد العينة الجافة .
- کمیتها ۲-۲% من الوزن أو لأكثر من ۱۰۰ مغ /كغ وزن حي .
- تضم: CI,Na,P,K,S,Mg&Ca
 کالسیوم ۶۹% %٤٦ ماتبقی ۲%
 - أهميتها:
 - ١- تشارك في ضبط العمليات
 الفسيولوجية الكبرى وتنظيمها
 - ٢- تدخل في بناء الأنسجة والمنتجات الحيوانية .

حساب الاحتياجات من العناصر

محتوى المنتج+ا لفقد الداخلي

- يقدر المتاح تجريبياً للأنواع المختلفة ' وتدون في الجداول .
 - من المعادلة : كمية الكالسيوم =٢،٢٧٠ خط -٢،٤٥+ ×م
 - كمية الفوسفور =٥،٥×ط +١،١٨×م
- ط: كمية الحليب السنوي بالطن ،م كمية الحليب اليومية كغ

الوظائف العامة للعناصر المعدنية

- ١- الهيكل العظمي والأسنان
- ٢-تراكيب خلوية مهمة (للنمو النتاج الطاقة)
 - ٣-هيمو غلوبين الدم .
- ٤-حمض كلور الماء وسوائل العصبارات الهاضمة ____ PH___
 - ٥-تنظيم الضغط الاسموزي في سوائل الجسم.
- ٦-استقلاب البروتينات ٧- السكريات ٨- الدهون ٩-تنشيط فاعلية بعض أنظيمات المعدة ٠١-مراقبة نشاط الخلايا العضلية وتقلص القلب ١١- وسط للتفاعلات في الكرش ١٢-تقليل تهيج الخلايا ١٣- تغذية النهايات العصبية ٢٠- تغذية النهايات العصبية ٢٠-

مراقبة التمويل الكافي للعناصر المعدنية

- * التحليل الدوري للأعلاف المحلية والمستوردة والمصنعة .
- * أخذ عينات حية من الحيوانات في المزارع كما يلي : ١- بلازما الدم . ٢- تحليل الغطاء الجلدي .
 - تركيز المواد في بعض الأعضاء المهمة (الكبد، الطحال، الكلى وبعض الغدد).
 - قياس قوة العظم .
 - الفحص الشعاعي لفقرات الذيل.
 - تحليل اللعاب والبول.
 - محتوى الحليب والبيض من العناصر المعدنية .
 - قياس نشاط فعالية بعض الأنزيمات (للكبد والكلى ...).

العوامل المؤثرة في محتوى الأعلاف من العناصر

- منشأ المواد الخام المناطق الجغرافية .
 - التسميد
- المناخ والبيئة (معدل هطول الأمطار ...).
 - التركيب المعدني للنباتات .
 - مرحلة النمو وعمر النبات.
 - أجزاء النبات .
 - عمليات الحصاد والتخزين
 - تواجد الأتربة والشوائب مع الحبوب.

عموميات

- *العناصر الثقيلة يرتبط تأثيرها بحسب تواجدها في المناطق الصناعية (الرصاص،الكدميوم ...).
- *العناصر الكبرى والتي يجب أخذ الحيطة (زيادة أو نقصان) كالعناصر الكبرى والتي يجب أخذ الحيطة (زيادة أو نقصان) .
 - *الاحتياجات متأرجحة بشدة تبعاً لنوع الحيوان وإنتاجه.
 - *القيمة الحيوية لأي عنصر تعرف من خلال درجة الاستفادة للعنصر بما يتعلق بمعامل هضمه في القناة الهضمية .
 - * محتوى المنتجات الحيوانية للعناصر ،عامل وراثي ، عدا عنصري Se المتعلق بتغذية الإنسان (الحليب واليود) .

عموميات

- *الامتصاص لكل العناصر في الأمعاء الغليظ –عدا المغنيزيوم *عند تناول الأبقار الأعلاف الغنية Mg أملاح المغنزيوم نتيجة اتحاد الحموض الدهنية غير المشبعة (كزاز المراعي) * تتوفر العناصر Na,Ca,P,Mg,Mn,Co,Zn&Cu في المواد العلفية بكثرة .
 - . ۱ : ۲-۱،۰ P : Ca غبسنا *
 - * الكالسيوم والفسفور في نشاط مستمر مع النسيج العظمي .

مقنن الاحتياجات

* لضمان توفر الاحتياجات من العناصر الكبرى / حيوان:

غ / حيوان / يوم .

* غ / كغ مادة جافة (%88 DM=88) .

* أما العناصر الصغرى فتعطى مغ / كغ مادة جافة

العوامل المؤثرة في الاحتياجات

- *يرتبط بالدرجة الأولى بالإنتاج (الحلوب، دجاج البيض Ca) *العلاقات المتبادلة لبعض العناصر :
 - التمويل الزائد من عنصر Ca يقابله زيادة عنصر Zn.
 - * طبيعة الروابط لبعض العناصر يؤثر في هضمها:
- الفسفور العضوي (الحبوب والبقوليات): المجترات 6 % وفي الدواجن</br>
 المحافظة على إضافتها لضمان الإنتاج ، الاستفادة من المخلوط المعدني أفضل من تلك المحمولة مع المواد العلفية.

*Definition: -Macromineral divalent cation

*Function : -Bone and teeth formation

Muscular tone (smooth,cardiac,and skeletal)

Neurosecretion (nerve impulse transmission)

Hepatocyte glycogenolysis

Insulin modulation

Blood clotting

*Tissue Distribution:

Over 98% of body Calcium is present in bone 8-10 g in Extra cellular fluids (in ionized form)

الدور الوظيفي للكالسبوم

- التنبيه العصبي (انقباض العضلات البيضاء ،القلب،المرتبطة بالهيكل العظمي).
 - نفاذية الأغشية الخلوية .
 - التوازن الحمضي القلوي.
 - تخثر الدم
 - بناء السكر من مصدر غير كربوهيدراتي في الكبد .
 - تعديل وتحوير الأنسولين ..
 - توزعه في الأنسجة ؛ أكثر ٩٨ % في العظم والأسنان

فقط من ٨-١ غ ضمن النسيج بين الخلوي

أهمية التمو يل للكالسيوم

۱- ضرورة كفاية الاحتياجات من Caورة كفاية الاحتياجات من الحتياجات من الحتياجات من عالم عالم المدخرات في حالة توازن.

٢- عدم كفاية المقننات يؤدي إلى تهدم جزئي للمدخرات وينتج
 عنه انخفاض في القدرات الإنتاجية للحيوان

٢- تعويض النقص الحاصل، مهما كانت كميته...، لا يؤدي إلى نتائج ايجابية سريعة.

حمى النفاس

- انخفاض كالسيوم الدم النفاسي (ويعرف خطأ- بحمى الحليب).
- ٢٤ ساعة من الولادة ، يسقط الحيوان على الأرض في غيبوبة .
 - الموسم الثالث . انتكاس الحالة ٧٠% .
 - خلل في التنظيم الهرموني PTH و CT ...
 - يتوجه Ca من الدم إلى الغدة اللبنية لأجل استمرار إنتاج الحليب مما يسبب في هبوط نسبة Ca بالدم .

يحفز حدوث الحالة

زيادة الطاقة خلال فترة التجفيف مما يشجع على تخزين Ca في في الأنسجة الشحمية نقص Vit D

تاول علائق قبل الولادة غنية بالكالسيوم

الوقاية العامة

1- علائق فقيرة بالكالسيوم في فترة التجفيف ٥٠ غ / يوم / بقرة . بهدف تحضير الحيوان ليقوم باستنفار وتهديم فعال في مدخراته عند الحاجة بعد الولادة .

- ٢- حقن فيتامين D3 قبل الولادة.
- ۳- حقن هرمون الدكساميتازون (Dexamethazone) .
 - قبل أربعة أيام من موعد الولادة.

Availability مايساعد على الامتصاص *

- -Presence vit D3
- -Protein level
- -Energy density
- -Lipids level
- -Calcium phosphorus ratio

الاحتياجات للأبقار الحلوب والرعاية -:Requirements

			<u> </u>
 V COW		.39	<u> </u>
y VV yy			//

- High cow 0.8%

-Low producing cow 0.65%

-Growing Heifers (By months):

0-3 0.64

3-6 0.52

6-12 0.41

2-24 0.3

*Dietary sources:-

- Legumes
- Oil-bearing seeds
- Supplements:

Limestone

Oyster shell

Bone meal

Dicalcium phosphate

Calcium amino acid chelates

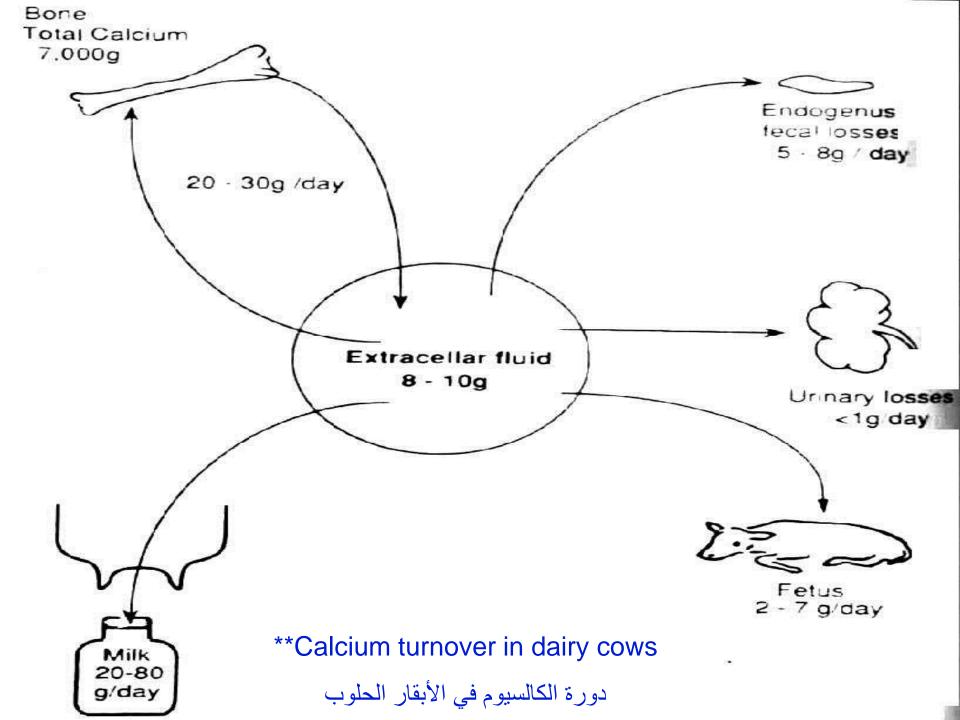
*Deficiency:-

1-Acute (Hypocalcaemia)

2-Chronic:

Adult Osteomalacia

Young Rickets

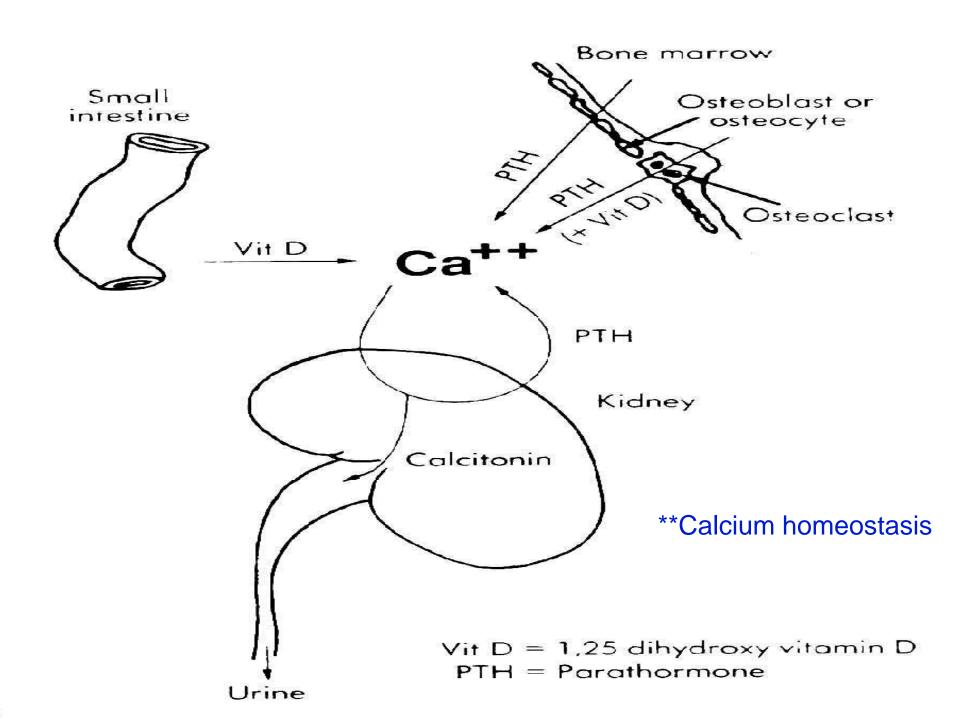


1-Hypocalcemia:- Deficiency of circulating ionized calcium<4 mg/dl plasma)

*Risk factors :-

- 3-Breed: Jerseys >Holsteins>Beef breeds.
- 4-High milk yield cows
- 5-Decreased DMI.

- 8-Improper close-up cow nutrition:
 - Excess feeding of Berseem (high Ca & K intake).


*Associated problems:-

(Occur with both clinical and subclinical hypocalcaemia)

- 1- Ruminal stasis
- 2-Displaced Abomasums
- 3-Mastitis
- 4-Dystocia
- 5-Retained Placenta
- 6-Early metritis
- 7-Uterine prolapsed
- 8-Ketosis

*Prevention:-

- -Dry cow ration low in Ca (<20 gm/day) and low in K
- -Feeding massive amount of vit. D
- -Make DCAD -150meq/kg DM
- -Preventive Ca administration at calving
- -Use Ca amino acid chelate.

المغنيزيوم

*نسبته في الحيوان (٤٠٠٠- ٥٠٠٠%) ،معظمها ٧٠% العظم *يساهم في تشكل العظام ،مخفف للتنبيه العصبي للعضلات، ينظم العديد من التفاعلات الأنزيمية.

*النقص:

١- تدهور الإنتاج ونمو الفتية ،ولوحظ خلل في تطور الرحم.
 ٢-الكزاز (الاستمرار في تقلص العضلات) ، والأسباب:
 انخفاض الامتصاص، -نقص الطاقة الخفاض الشهية والعلاج حقن لمركبات المغنيزيوم ،والوقاية أفضل (١٥-٢٥غ/يوم في موسم الرعي ، عادة ٤-٢غ/يوم كافية

الكلور والصوديوم

*يتواجدان داخل الخلايا ، ٣٥% في الجهاز العظمي .

*تنظيم الضغط الأسموزي ،التوازن الحمضي القلوي .

يتواجد البوتاسيوم داخل الخلايا ،وبخاصة

الأنسجة العضلية (٥٧%) ،دوره في التقلص

مضخة الصوديوم بوتاسيوم الهامة للنقل الفعال

تناول المولاس وأوراق وتبجان الشوندر ،خلل في النسبة فيطرح الفائض ومعه ا Na .

الكبريت

- توفر العلائق التقليدية الاحتياجات من هذا العنصر بحدها الأدنى (٥،١ غ/كغ مادة جافة): عدا
 - علائق سیلاج الذرة الصفراء فقیرة بالکبریت وتقدر (۱غ/کغ).
 - كما لوحظ عند:
- المركبات NPN تضعف عملية بناء البروتين الميكروبي لذا ينصح بإضافة فقط (٢٤ /كغ مادة جافة) لأن الربادة تؤثر على الاستفادة من العناصر Zn,Cu&Mn

الأعلاف الخشنة والعناصر المعدنية

الكالسيوم نخفض ٣٣غ

/كغ

الفوسفور كاف نسبيً البوتاسيوم ٥١غ/كغ

-الصوديوم ٥،٠ غ/كغ ـ

-البوتاسيوم ١٥غ/كغ .

-الصوديوم ٥،١-٣غ/كغ ـ

تتأثر: -التربة التسميد - الصنف ومرحلة النمو...

شكراً لإصفائكم

DCAD

 $DCAD = {Na (mg/kg)/23+K (mg/kg)/39.1} - {Cl (mg/kg)/35.5+S (mg/kg)/16}$ = meq/kg/DM

For close-up cow DCAD = - 150 meg/kg/DM

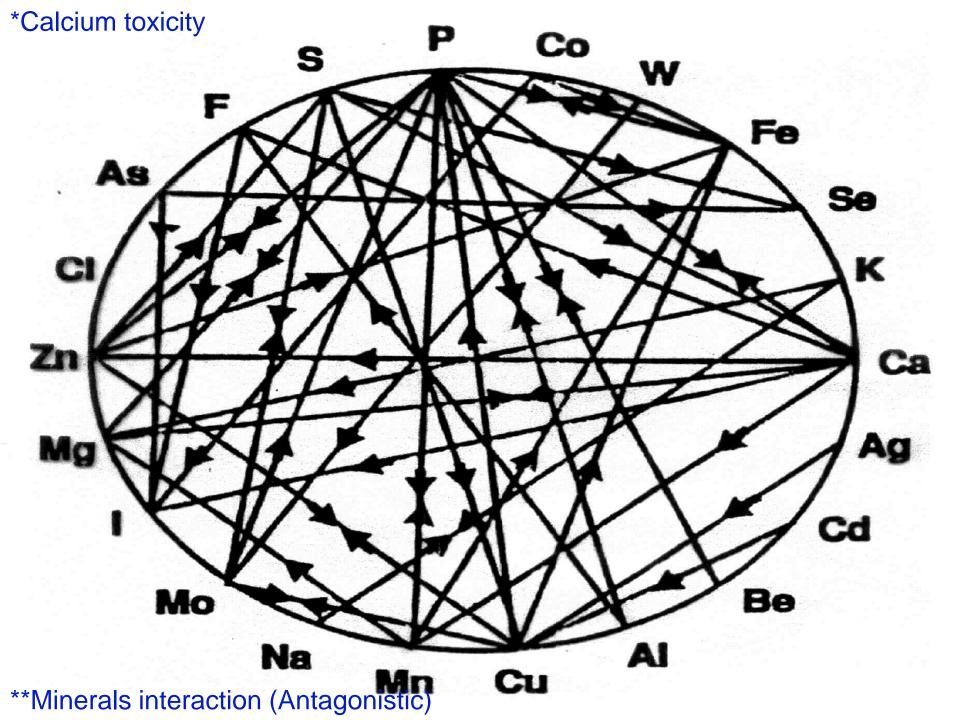
For lactating cow DCAD = 380 meq/kg/DM

Practical Diet Formulation Using DCAD

*Anionic salts:-

- -Magnesium sulfate
- -Ammonium sulfate
- -Calcium chloride
- -Ammonium chloride

*When should Anionic salts be used in dry cow diets?


- General poor early lactation performance.
- Health difficulties.
- Any high producing herd without obvious clinical situations, may benefit from alleviation of some subclinical problems, and lactational and reproductive performance may be improved.

Make Acidogenic Diet

- 1-All basal feeding ingredients should by analyzed for Ca,Mg,P,Na.K,Cland S.
- 2-Calculate DCAD of the basal diet.
- 3-Inclusion of Mg Sulfate, or Ca sulfate, and Ammonium sulfate.
 - Mg should not exceed 0.4%
 - Sulfur should not exceed 0.4%
- 4-Next supplementation of enough Ammonium or Ca or Mg chloride or combination to achieve DCAD 100 or 150 meg/kg/DM.
 - -Chlorine range between 0.8 1.1 % of DM .
- 5-Calcium should be above 0.9 % (can be set 1.5 %)
- 6-Phosphorus should be set 40 to 50 g /day.

Precautions التدابير الوقائية **

- 1-If DCAD is not less than -100 meq/kg/DM decrease Ca to 70 to 90 g/d.
- 2-Diets containing anionic salt should be fed as TMR.
- 3-Follow up urine pH (5.5-6.5).
- 4-DCAD diets should be fed for 3-4 weeks prepartum not for lactating cow

*Functions:-

1-Bone and teeth formation

2-Energy transfer

3-Vital component of the cell membrane

4-A constituent of DNA and RNA

*Requirements:-

							A 7
<u> </u>	CV (.%
	I W	√/\V					
					\sim		

- High cow 0.5%

-Low producing cow 0.35%

-Growing Heifers (By months):

0-3 0.4

3-6 0.31

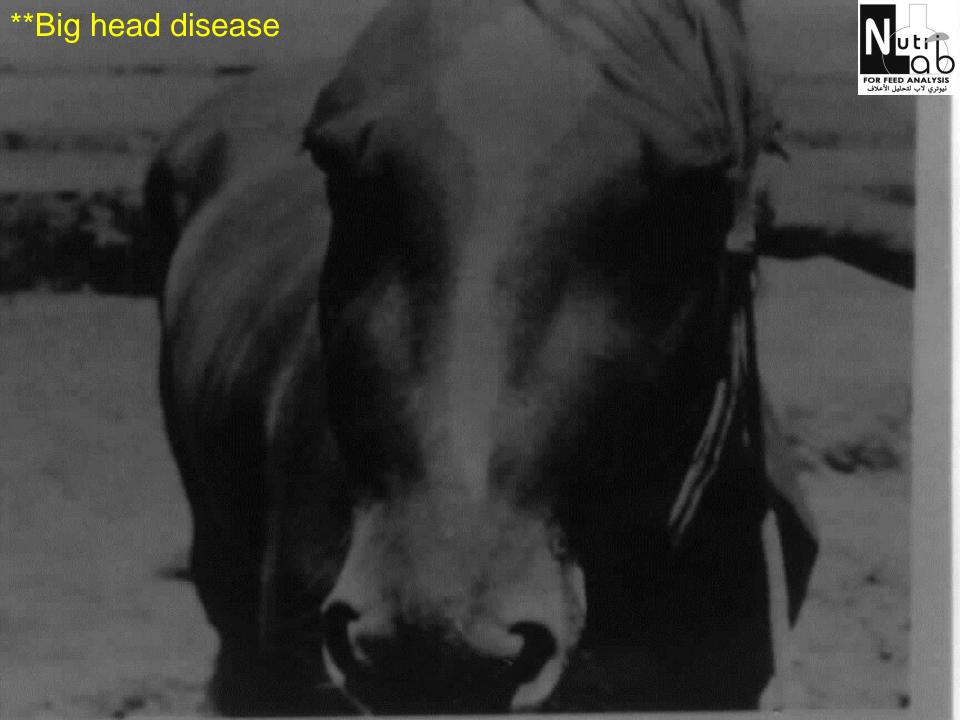
6-12 0.3

12-24 0.23

*Dietary sources:-

- -Grains
- Grain by-products
- Supplements:

Monocalcium phosphate
Dicalcium phosphate
Bone meal


*Deficiency:-

- Post parturient hemogolbinuria
- Decreased appetite
- Pica
- Decreased body weight gain
- Decreased milk production
- Poor reproductive performance
- Lameness
- Rickets

*Toxicity:-

- Urolithiasis
- Big head disease

*Functions:-

- 1- Bone and teeth formation
- 2- Calcium metabolism
- 3-Muscle relaxant
- 4-Nerve impulse transmission.
- 5-Energy metabolism

*Requirements:-

				<u> </u>			\sim $^{\prime}$
1/1/27	V COV	7.7				16	
		<mark>WV</mark>		· ·	, , , , , , , , , , , , , , , , , , ,	<u> </u>	

- High cow 0.3%
- -Low producing cow 0.25%
- -Growing Heifers (By months):

		A 4	
0-3		0.1	

- 3-6 0.16
- 6-12 0.16
- 12-24 0.16

*Dietary sources:-

- -Grains
- Supplements:

Magnesium sulfate Magnesium oxide

*Deficiency:-

- Grass tetany (cows)
- Milk tetany (calves)

*Risk factors:-

- -Feeding of rapidly growing plant (contains high K&NPN levels)
- -Environmental stress
- -Urea feeding

* Prevention:-

Provide adequate dietary Mg level
Provide good quality forage
Avoid stress

*Toxicity:-

- -Heart problems
- -Muscle weakness
- -Paralysis (similar to milk fever)

*Functions:-

- 1-Acid-base balance
- 2-Muscle contraction
- 3-Nerve impulse transmission
- 4-Maintaining intracellular osmotic pressure

*Requirements:

1277	cow			65	U
L/L y			· · · · · · · · · · · · · · · · · · ·	$igcup_{i}$	

-Growing Heifers 0.65% across age classes

- -Berseem
- Plant protein sources
- Supplements:

Potassium chloride Potassium carbonate

*Deficiency:-

- Pica
- Down cows
- Decrease production performance

*Risk factors:-

- Heat stress
- -Transportation stress
- Diarrhea
- Feeding excessive amount of corn silage

* Prevention:-

- Provide good quality forage (Berseem)
- Avoid stress
- Mixing Potassium chloride with concentrate or spraying solutions of it into hay.

*Toxicity:-

-At a level 3% or greater interfere with magnesium absorption causing

* Sodium ion can directly be detected by taste buds in the tongue

*Functions:-

- 1-Acid-base balance
- 2-Muscle contraction
- 3-Nerve impulse transmission
- 4-Maintaining extracellular osmotic pressure
- 5-Involved in cellular uptake of glucose

*Requirements:-

- Dry cow 0.1%

- High cow 0.18%

- Low producing cow 0.18%

-Growing Heifers 0.1% across age classes

*Sources:-

- -Common salt
- Sodium bicarbonate

*Deficiency:-

- Decrease feed intake
- Pica
- Poor hair coat
- Decrease production performance

*Risk factors:-

- Heat stress
- Transportation stress
- Diarrhea
- Production stress

*Prevention:-

- Avoid stress
- Mixing Sodium chloride and/or

sodium

*Toxicity:-

bicarbonate with concentrate.

At a level 2% or greater or water restriction, there are at least two syndromes:

- 1- Diarrhea
- 2- Nervous signs:

Blindness

Convulsions

Come

Death.

*Functions:-

- 1-Acid-base balance
- 2-Nerve impulse transmission
- 3-Maintaining extra and intra cellular osmotic pressure
- 4- Form HCl in stomach

*Requirements:

			<u></u>	~ 0.07
_	v cow).2%
			· ·	/ - (

- High cow 0.25%
- Low producing cow 0.25%
- Growing Heifers 0.2% across age classes

*Sources:-

- Common salt
- Potassium chloride

*Deficiency:-

- Decrease feed intake
- Pica
- Metabolic alkalosis
- Decrease production performance

*Associated factors:-

- Heat stress
- Transportation stress
- Diarrhea
- Production stress (heavily lactating cow)

*Prevention:-

- Avoid stress
- Mixing Sodium chloride with concentrate.

*Toxicity:-

Its toxicity is low.

*Functions:-

1- Synthesis of methionine and cystine in the rumen.

2-Present in B-vitamins

3-Lipids metabolism

4-Carbohydrates metabolism

5-Energy metabolism

*Requirements:-

- Dry cow 0.2%

- High cow 0.25%

- Low producing cow 0.25%

-Growing Heifers 0.2% across age classes

*Prevention:-

- Maintaining nitrogen sulfur ratio 10-12:1

*Deficiency:-

- When feeding high NPN and/or large amount of corn silage
- Poor hair coat
- Decrease production performance

*Sources:-

- Elemental sulfur
- Ammonium sulfate

*Toxicity:-

- Poliencephomalacia
- Abdominal pains
- Muddy colored gums
- H2S odor on breath

Health-Productivity-Supplementation

-Zinc (Zn^{+2})

- Selenium(Se⁻²)
- $Manganese(Mn^{+2})$
- Copper (Cu⁺²)
- Iron (Fe^{+2})

- Cobalt (Co+2)

- lodine (t)

- *Function:
- Enzyme function
- Immune function
- Vit.A metabolism
- Perform 200 biochemical process in body

*Availability:- High Ca ,Fe, Se ↓

Vit.C ,organic acid ↑

Legumes higher than grass

Zn in cereal grain less available

*Requirements(ppm):-

Toxic level(ppm)

Dairy cattle	40	1000
Beef	20-40	500
Sheep	20-30	750

*Deficiency:-

- Loss of hair
- Scaly skin
- Foot problems
- Increased mastitis
- Low productive & reproductive performance

*Animal sample: liver (blood only in sever deficiency

*Supplementation sources:-

- Inorganic (Zinc sulfate, Zinc carbonate)
- Organic Zinc

*Function: - Enzyme activator :- Skeletal syptem

- Hormone system

- Energy production

- Reproduction

*Availability:- High Ca,P, Fe \

Sheep

NH	l emma			<u>/ /</u>		<u> </u>
372		11 11 17	em e	<u> </u>	' <mark>n 'nn</mark> '	<mark> </mark>
	<u> </u>	GILL			2000,	<mark>/</mark> =

Toxic level (ppm)

Dairy cattle	40	1000
Beef	20-40	1000

20-30

*Deficiency:-

- U L i J U L i J U L i J U L i J U L i J U L i J U L i J U L I U L i J
- Deformed calf (loss of leg angularity) والمحدود المعدود الأعلاق المعدود الأعلاق المعدود الأعلاق المعدود المعدود الأعلاق المعدود الم
- Delayed estrus
- Poor conception rate

*Animal sample: liver

*Supplementation sources:-

- Inorganic (Mn sulfate, Mn oxide)
- Organic Mn

- *Function: Blood formation
 - Hair pigments
 - Immune function
 - Hormone system
 - Reproductive

*Availability:- High Mo ,S Zn ,Fe, Se , vit. C 🗼 Vit.A ↑

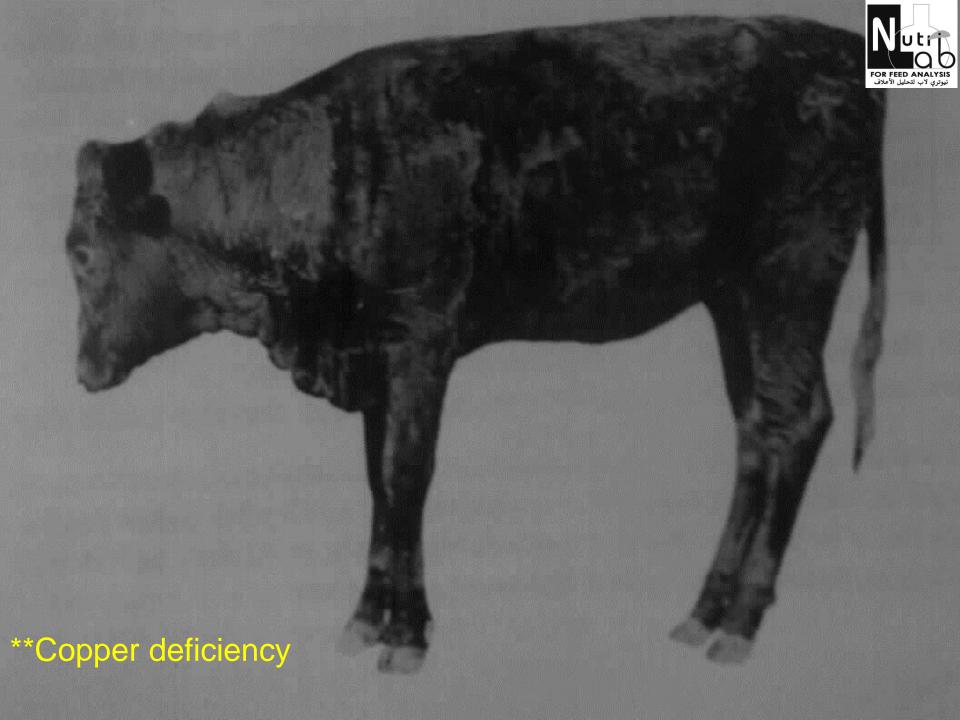
Toxic level (ppm)

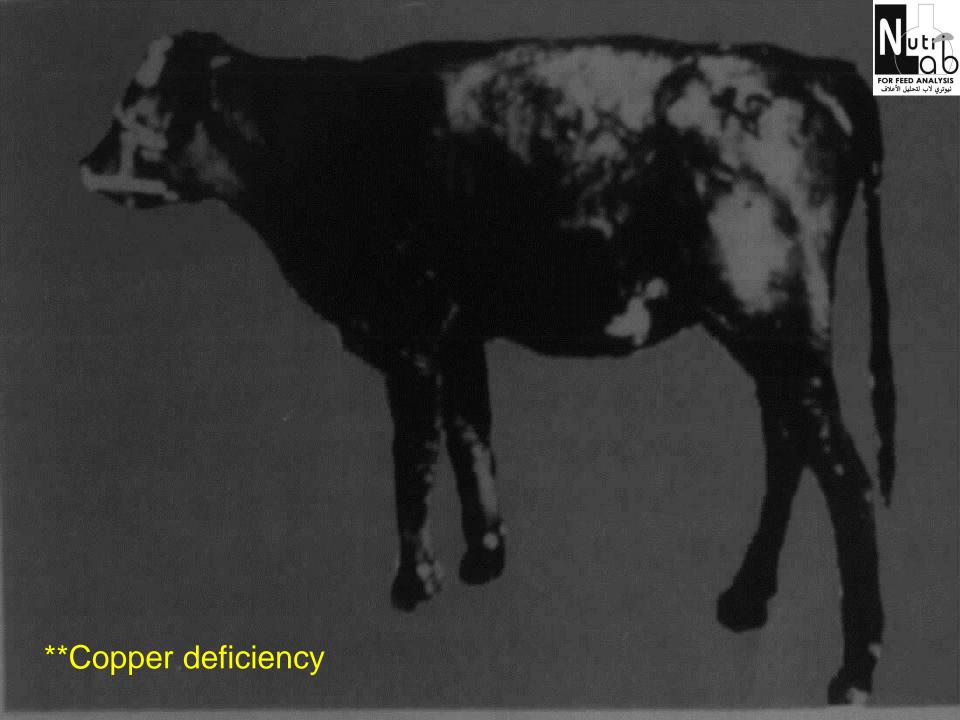
Dairy cattle 10-20 80				
-----------------------	--	--	--	--

Beef 4-10 115

Sheep 7-10 25

*Deficiency:-


- -Gray hair on black cattle
- Depigmentation of skin around eye
- Immune depression
- Diarrhea
- Heart failure
- Infertility
- Depressed milk production and growth rate.



*Animal sample: liver

*Supplementation sources:-

- Inorganic (Cu sulfate, Cu carbonate)
- Organic Cu

*Function:

- Carry O₂ in blood.

*Availability:- High Ca ,P, Zn ,Mn, tetracycline ,tannin ↓
Vit.C , organic acid ↑

"Requirements(ppm):-		loxic level (ppm)
Dairy cattle	50	1000
Calves cattle	100	1000
Beef cattle	50-100	1000
Sheep	30-50	500

*Deficiency:-

U Li

FOR FEED ANALYSIS

نيوتري لاب لتحليل الأعلاف

- Anemia
- Loss of appetite
- Poor body weight gain

*Supplementation sources:-

- Inorganic (Ferrous sulfate)
- Organic Fe

(Se⁻²)

*Function:

- Enzyme function
- Immune function
- Spares Vit.A

unsaturated

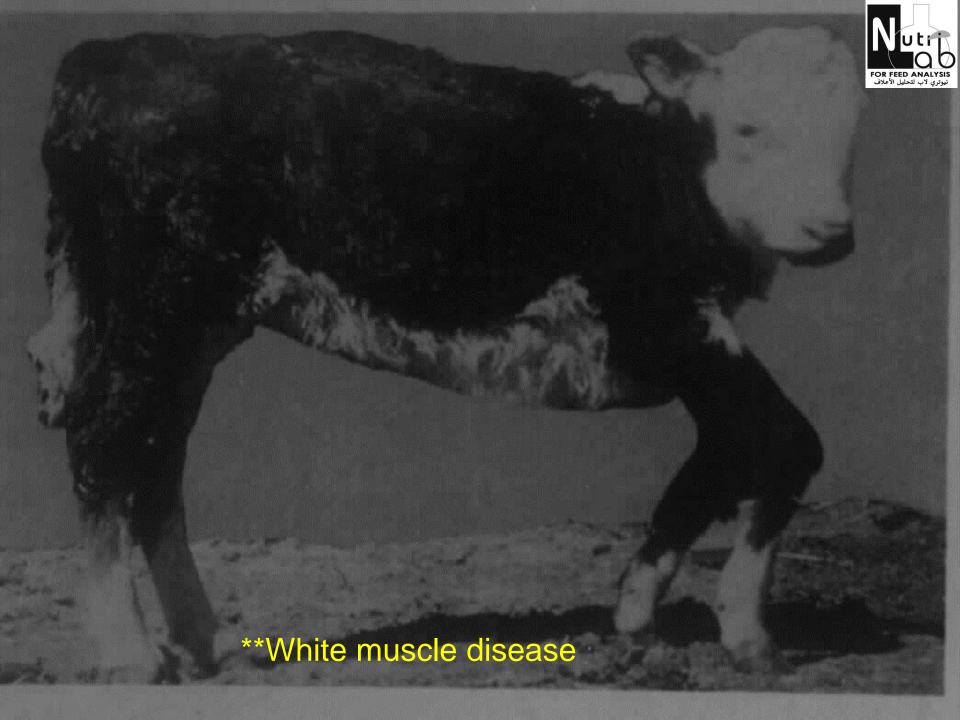
*Availability: Vit C, sulfate, Cu, Ca, nitrate and fatty acids ↓

Vit.A and E ↑

*Requirements(ppm):-

Toxic level (ppm)

2


Dairy cattle 0.15

Beef cattle 0.15

- *Deficiency:-
- White muscle disease
- Calves not suckling
- Retained placenta
- Increased mastitis
- Sudden death (cardiac trouble)

*Supplementation sources:-

- Sodium selenite
- Organic Se
- Injections

*Function: - Vit B₁₂ synthesis

*Requirements(ppm):-

Toxic level (ppm)

Dairy cattle 0.1 10
Calves cattle 0.07-0.1 5
Sheep 0.1 10

*Deficiency:-

- Emaciation

- Rough hair

- Ketosis

*Supplementation sources: Cobalt sulfate

*Functions:-

- Thyroid hormone

Nh -				<u>-7</u>	No.	· · · · · · · · · · · · · · · · · · ·		
- 7 75	K(2)	emel	nts		mo	I:- loxic level (ngo	
					<u> </u>		· II	


Dairy cattle 0.25-0.5 50

Beef cattle 0.2-2 50

- *Deficiency:-
- Goiter
- Weak or hairless young
- Abortion
- Fetal reabsorption
- Subnormal birth weight
- Infertility
- Weak calf unable to suckling

*Supplementation sources:- Calcium iodate

Potassium iodide

