

تصميم العناصر البيتونية:

العناصر المقاومة للزلازل تتعرض لقوى:

$$V_{
m LL}$$
 المال شاقولية حية $V_{
m DL}$ المال شاقولية ميتة عن الرياح المحال شاقولية عن الرياح مع المرياح ا

29/07/1441

- تراكيب الأحمال في حالة الطريقة الستاتيكية المكافئة:

آ- التراكيب الأساسية:

يجب أن تقاوم المنشآت وكافة الأجزاء المكونة لها أكثر التأثيرات خطورة من التراكيب التالية بعد ضرب الأحمال بالعوامل التالية :

 $1.32DL + 1.1E + 1.1(LL.f_1 + f_2S)$

 $0.99DL \pm (1.1E \text{ or } 1.3W)$

DL الأحمال الميتة LL الأحمال الحبة

أحمال الثلج \mathbf{W} أحمال الرياح \mathbf{S}

 $f_1=1$ للأسقف في المواقع ذات التجمعات العامة وفي الأماكن التي تتجاوز فيها الأحمال الحية $5 {\rm kN/m^2}$ وفي الأحمال الحية لرائب السيارات

لباقي الأحمال الحية $f_1 = 0.5$

 $f_2 = 0.7$ الأسقف النهائية ذات الأشكال الخاصة (مثل سقف سن المنشار) والتي لا تسمح بطرح الثلج بعيداً عن المنشأ (التخلص منه)

f₂ =0.2 لباقي الأسقف النهائية

 $E = \rho E_h + 0.5.C_a.I.DL$

الأحمال الزلزالية الأفقية المحسوبة من قوة القص القاعدي

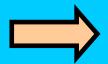
 E_h

معامل الوثوقية ودرجة عدم التقرير

في حال حساب الإزاحة أوعند وقوع المنشأ في المناطق الزلزالية ho=1

$$1 \le \rho = 2 - \frac{6.1}{r_{\text{max}} \sqrt{A_{\text{B}}}} \le 1.5$$

مساحة الطابق الأرضي للمنشأ بالمتر المربع


التي تحدث في أي من مناسيب الطوابق لي القيمة العظمى لـ لمن الثلثين السفلين لارتفاع البناء ألم البناء المناء المناء

في حالة جدران القص تؤخذ r_i على أساس القيمة العظمى من حاصل ضرب قيمة قوة القص في الجدار بالعامل (3/Lw) مقسمومة على الطابقي الكلي

Ω : معامل خفض المقاومة

- حالة المقاطع المعرضة لقوى ضغط لا محورية :

$$0.9 \ge \Omega = 0.9 - 0.5 \left(\frac{N_u}{N_c}\right) \ge 0.65$$
 $N_c = 0.85 f_c' A_c$

$$N_c = 0.85 f_c' A_c$$

مثال: حساب معامل خفض المقاومة إذا كان

$$N_u = 300 \text{ton}$$
, $f_c' = 180 \text{kg/cm}^2$, $b = 30 \text{cm}$, $h = 200 \text{cm}$

$$\Omega = 0.9 - 0.5 \left(\frac{300 \times 1000}{0.85 \times 180 \times 30 \times 200} \right) = 0.74$$

$$\frac{N_{\rm u}}{N_{\rm c}} \ge 0.5$$

$$\frac{N_{\rm u}}{N_{\rm c}} \ge 0.5$$

مثال : مقطع مستطيل أبعاده $(h=70,h=25{\rm cm})$. يتعرض لعزم حدي مثال : مقطع مستطيل أبعاده $N_{\rm u}=60{\rm t}$ ، $N_{\rm u}=40{\rm t.m}$ وقوة محورية ضاغطة حدية $M_{\rm u}=40{\rm t.m}$ المقطع باعتبار أن التسليح متناظر و $f_{\rm y}=2400{\rm kg/cm^2}$, $f_{\rm e}'=180{\rm kg/cm^2}$ والتغطية $d'=5{\rm cm}$

الحل :

$$0.9 \ge \Omega = 0.9 - 0.5(\frac{N_u}{N_c} - 0.1) \ge 0.7$$
 عامل خفض القاومة: $0.9 \ge \Omega = 0.9 - 0.5(\frac{N_u}{N_c} - 0.1) \ge 0.7$

$$N_c = 0.85 \times f_c \times b \times h = 0.85 \times 180 \times 25 \times 70 = 267750 kg$$

$$\Omega = 0.9 - 0.5(\frac{60000}{267750} - 0.1) = 0.838 > 0.7$$

$$d = h - 5 = 70 - 5 = 65$$
cm

2- الارتفاع الفعال:

$$f_s'=f_y$$
 , $f_s=-f_y$ نفرض أن الفولاذ المشدود والفولاذ المضغوط متلدن -3

$$A_s = A_s'$$

 $60000 = 0.838 (0.85 \times 180 \times 25y + A_s' f_y + A_s.(-f_y))$
 $y = \frac{60000}{0.838 \times 0.85 \times 180 \times 25} = 18.72 \text{cm}$

4- نتحقق من أن الفرض صحيح :

$$f_s = -6300 \frac{0.85d - y}{y} = -6300 \frac{0.85 \times 65 - 18.72}{18.72} = -12293.75 \text{kg/cm}^2$$

$$f_s' = 6300 \frac{18.72 - 0.85 \times 5}{18.72} = 4869.72 \text{kg/cm}^2$$

نلاحظ أن الشرط محقق أي أن فولاذ التسليح المضغوط والمشدود متلدان

5- نحسب التسليح من علاقة العزم

$$M_{u} = \Omega \left[0.85 f_{c}' b. y(\frac{h}{2} - \frac{y}{2}) + A_{s}'. f_{s}'(\frac{h}{2} - d') - A_{s}. f_{s}(\frac{h}{2} - a) \right]$$

$$4000000 = 0.838 \left[0.85 \times 180 \times 25 \times 18.72(35 - \frac{18.72}{2}) + A_{s}'. (2400)(35 - 5) - A_{s}. (-2400)(35 - 5) \right]$$

$$A_s = A_s' = 20.4 \text{cm}^2$$
 $\mu_t = \frac{A_s + A_s'}{b \times h} = \frac{2 \times 20.4}{25 \times 70} = 0.012 < 0.004$

من مخططات الترابط

$$\frac{d}{h} = \frac{65}{70} = 0.93$$

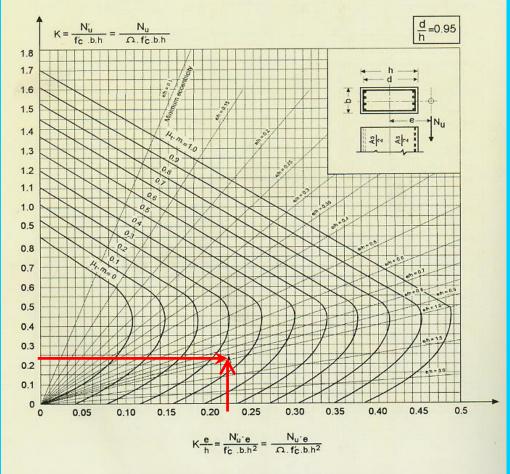
$$m = \frac{f_y}{0.85 \times f_c} = \frac{2400}{0.85 \times 180} = 15.69$$

$$K = \frac{N_u}{\Omega f_c' b.h} = \frac{60000}{0.838 \times 180 \times 25 \times 70} = 0.227$$

$$K.\frac{e}{h} = 0.227 \frac{0.66667}{0.7} = 0.216$$

$$\mu_t.m = 0.36 \implies \mu_t = \frac{0.36}{15.69} = 0.023 \implies$$

$$A_s = A_s' = \frac{0.023 \times 70 \times 25}{2} = 20.13 \text{cm}^2$$

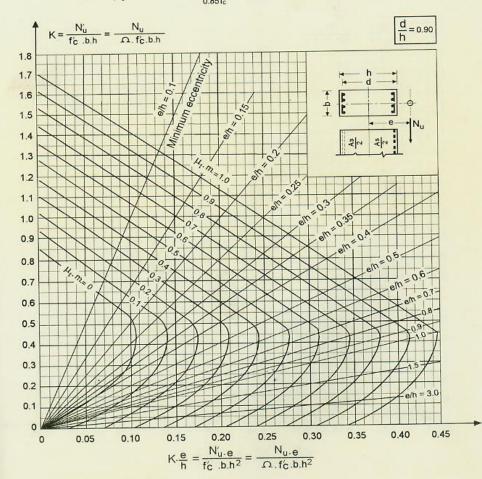

الأعمدة القصيرة الخاضعة للإنعطاف المركب (حمولة منحرفة بلامركزية صغيرة أومتوسطة)

$$A_s$$
 (total) = μ_t . b.h

$$m = \frac{f_y}{0.85 f'_c} \qquad \qquad M'_{\dot{\mathbf{U}}} = N'_{\dot{\mathbf{U}}} \cdot \mathbf{e}$$

$$M_{\mathbf{U}} = N_{\mathbf{u}}$$

$$N_u' = \frac{N_u}{\Omega}$$

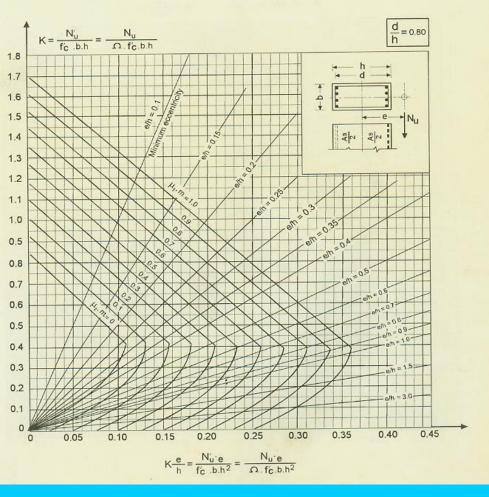

From: Ref. 8: Winter: Design of Concrete Structures

الأعمدة القصيرة الخاضعة للإنعطاف المركب (حمولة منحرفة بلامركزية صغيرة أومتوسطة)

$$A_s \text{ (total)} = \mu_t, b, h \qquad \qquad m = \frac{f_y}{0.85 f_c'} \qquad \qquad M_u' = N_u' \cdot e \qquad \qquad N_u' = \frac{N_u}{\Omega}$$

$$n = \frac{f_y}{0.85f_c'}$$

$$N'_{u} = \frac{N_{u}}{\Omega}$$

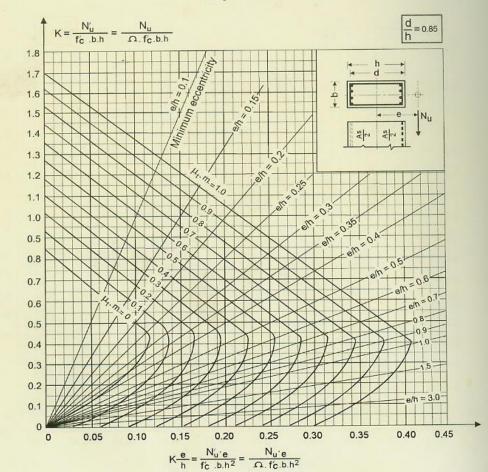

الأعمدة القصيرة الخاضعة للإنعطاف الموكّب (حمولة منخرفة بلامركزية صغيرة أومتوسطة)

$$A_s \; ({\scriptscriptstyle total}) \! \equiv \mu_t. \, b.h$$

$$m = \frac{f_y}{0.85f_c^2}$$

$$M_u' = N_u' \cdot e$$

$$N'_{u} = \frac{N_{u}}{\Omega}$$



الأعمدة القصيرة الخاضعة للإنعطاف المركب (حمولة منحرفة بلامركزية صغيرة أومتوسطة)

$$A_s (total) = \mu_t \cdot b \cdot h$$
 $m = \frac{f_y}{0.85 f_c'}$

$$m = \frac{f_y}{0.85f_0^2}$$

$$N'_{u} = \frac{N_{u}}{\Omega}$$

اشتراطات التسليح الخاصة بجدران القص:

حالة اللامركزية الصغيرة

مساحة التسليح الدنيا

التسليح على طبقتين أملس عادي عالي المقاومة

 $(0.0025 + 0.0035 \frac{N_u}{N'})A_c'$

التسليح الأنقي

 $0.0025A_{c}'$ $0.002A_{c}'$

> $N_u \leq 0.5 N_u$ $0.0025A_{c}$

> > $N_{u} > 0.5 N_{u}$

 $N_{\mu}' = 0.85 \times 0.85 \times 0.7 \times f_{c}'bh$

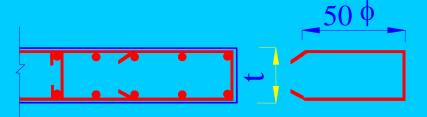
مساحة المقطع في الانجاه المدروس A_c '

29/07/1441

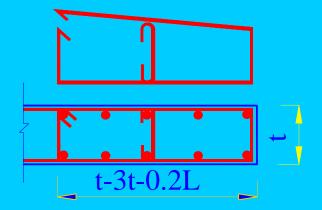
 $0.002A_{c}$

 $(0.002 + 0.004 \frac{N_u}{N_u})A_c'$

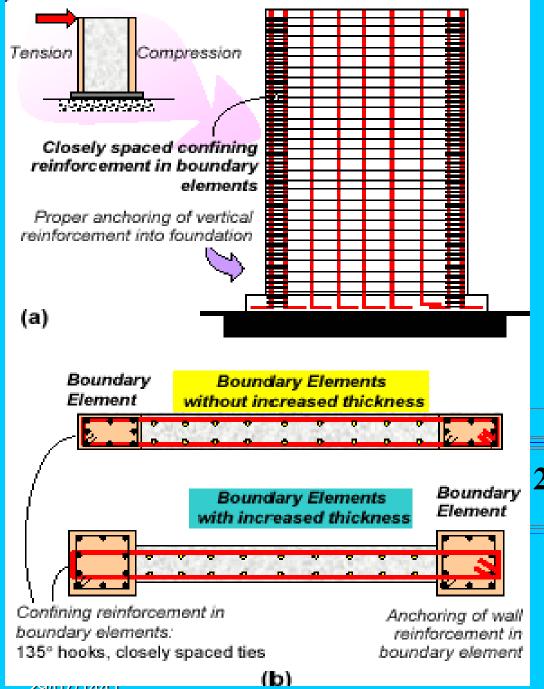
20


التسليح

الشاقولي



لا حاجة لوضع أعمدة مخفية يكتفي توزيع التسليح ووضع كانات مفتوحة بقطر لا يقل 8مم وبطول 50 مرة قطر الكانة



$$N_u > 0.5N_u$$

توضع أعمدة مخفية في نهايات الجدار بطول ضعف سمك الجدار كحد أدنى وبطول أعظمي لا يتجاوز 0.2 من طول الجدار وتسلح بتسليح لا يقل عن %1 من مقطع العمود المخفي ولا يتجاوز

2.5%

حالة اللامركزية الكبيرة

ترتيب التسليح في حالة اللامركزية كبيرة

تطبق القواعد الخاصة بالجوائز

توضع أعمدة مخفية في نهايات الجدار بطول ضعف سمك الجدار ويسلح

بالتسليح اللازم للشد ولا يتجاوز %2.5

22

تصميم الأساسات

- قدرة تعمل التربة في تقارير ميكانيك التربة هي أكبر إجهاد مسموح يمكن تطبيقه على التربة من أحمال الاستثمار (أحمال غير مصعدة).

> 1- يسمح بزيادة قدرة تعمل التربة بمقدار 25٪ عند تصميم الأساسات وباستخدام الأحمال غير الصعدة وذلك عند دراسة أثر الرياح أو الزلازل

2- يسمح بريادة قدرة تعمل التربة بمقدار 60٪ عند تصميم الأساسات وباستخدام الأحمال المصعدة وذلك عند دراسة أثر الرياح أو الزلازل في حال

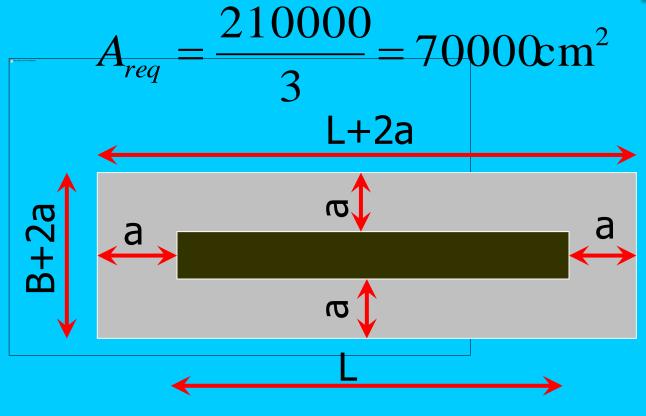
: کقق

$$\frac{\sigma_{\max}}{\sigma_{\min}} < 2$$

3- يسمح بزيادة قدرة تعمل التربة بمقدار 100٪ عند تصميم الأساسات وباستخدام الأحمال المعدة وذلك عند دراسة أثر الرياح أو الزلازل في حال تحقق :

$$\frac{\sigma_{\max}}{\sigma_{\min}} \ge 2$$

مثال : ____ لنفرض لدينا جدار قص أبعاد مقطعه العرضي $25 \text{x} 200 \text{cm}^2$ ويتعرض لحمولة استثمار شاقولية تساوي 200 ton ومقدار تحمل التربة يساوي 3kg/cm^2 إذا علمت أن الجدار يتعرض لأحمال مصعدة ناتجة عن الزلزال $N_u = 310 \text{ton}$ و عزم انعطاف $M_u = 73 \text{ton.m}$ والمطوب حساب أبعاد الأساس.


نصمم الأساس بدون أثر الزلزال:

29/07/1441

- الحمولة الاستثمارية الشاقولية +وزن الأساس

$$N_u = 200 + 0.05 \times 200 = 210 \text{ton}$$

- المساحة المطلوبة للأساس:

 $70000 = (200 + 2a)(25 + 2a) \implies a = 85$ cm

$$L_1 = 85 \times 2 + 200 = 370$$
cm $B_1 = 85 \times 2 + 25 = 195$ cm

$$B_1 = 85 \times 2 + 25 = 195$$
cm

- الاجهاد الصافي على التربة :

$$\sigma_{net} = \frac{200000}{370 \times 195} = 2.77 \text{kg/cm}^2$$

نتحقق من أبعاد الأساس مع أثر الزلزال:

$$e = \frac{73}{310} = 0.235$$
m

- الاجهاد ات:

$$\sigma_{\text{max}} = \frac{310000}{370 \times 195} (1 + \frac{6 \times 23.5}{370}) = 5.93 \text{kg/cm}^2$$

$$\sigma_{\text{min}} = \frac{310000}{370 \times 195} (1 - \frac{6 \times 23.5}{370}) = 2.66 \text{kg/cm}^2$$

$$\frac{\sigma_{\text{max}}}{\sigma_{\text{min}}} = \frac{5.93}{2.66} = 2.23 > 2 \implies \sigma_{\text{soil}} = 2 \times 3 = 6 \text{kg/cm}^2$$